13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Induction of Viable but Nonculturable State in Rhodococcus and Transcriptome Analysis Using RNA-seq

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Viable but nonculturable (VBNC) bacteria, which maintain the viability with loss of culturability, universally exist in contaminated and non-contaminated environments. In this study, two strains, Rhodococcus sp. TG13 and TN3, which were isolated from PCB-contaminated sediment and non-contaminated sediment respectively, were investigated under low temperature and oligotrophic conditions. The results indicated that the two strains TG13 and TN3 could enter into the VBNC state with different incubation times, and could recover culturability by reversal of unfavourable factors and addition of resuscitation-promoting factor (Rpf), respectively. Furthermore, the gene expression variations in the VBNC response were clarified by Illumina high throughput RNA-sequencing. Genome-wide transcriptional analysis demonstrated that up-regulated genes in the VBNC cells of the strain TG13 related to protein modification, ATP accumulation and RNA polymerase, while all differentially expressed genes (DEGs) in the VBNC cells of the strain TN3 were down-regulated. However, the down-regulated genes in both the two strains mainly encoded NADH dehydrogenase subunit, catalase, oxidoreductase, which further verified that cold-induced loss of ability to defend oxidative stress may play an important role in induction of the VBNC state. This study further verified that the molecular mechanisms underlying the VBNC state varied with various bacterial species. Study on the VBNC state of non-pathogenic bacteria will provide new insights into the limitation of environmental micro-bioremediation and the cultivation of unculturable species.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Recent findings on the viable but nonculturable state in pathogenic bacteria.

          Many bacteria, including a variety of important human pathogens, are known to respond to various environmental stresses by entry into a novel physiological state, where the cells remain viable, but are no longer culturable on standard laboratory media. On resuscitation from this 'viable but nonculturable' (VBNC) state, the cells regain culturability and the renewed ability to cause infection. It is likely that the VBNC state is a survival strategy, although several interesting alternative explanations have been suggested. This review describes the VBNC state, the various chemical and physical factors known to induce cells into this state, the cellular traits and gene expression exhibited by VBNC cells, their antibiotic resistance, retention of virulence and ability to attach and persist in the environment, and factors that have been found to allow resuscitation of VBNC cells. Along with simple reversal of the inducing stresses, a variety of interesting chemical and biological factors have been shown to allow resuscitation, including extracellular resuscitation-promoting proteins, a novel quorum-sensing system (AI-3) and interactions with amoeba. Finally, the central role of catalase in the VBNC response of some bacteria, including its genetic regulation, is described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The viable but nonculturable state in bacteria.

            It had long been assumed that a bacterial cell was dead when it was no longer able to grow on routine culture media. We now know that this assumption is simplistic, and that there are many situations where a cell loses culturability but remains viable and potentially able to regrow. This mini-review defines what the "viable but nonculturable" (VBNC) state is, and illustrates the methods that can be used to show that a bacterial cell is in this physiological state. The diverse environmental factors which induce this state, and the variety of bacteria which have been shown to enter into the VBNC state, are listed. In recent years, a great amount of research has revealed what occurs in cells as they enter and exist in this state, and these studies are also detailed. The ability of cells to resuscitate from the VBNC state and return to an actively metabolizing and culturable form is described, as well as the ability of these cells to retain virulence. Finally, the question of why cells become nonculturable is addressed. It is hoped that this mini-review will encourage researchers to consider this survival state in their studies as an alternative to the conclusion that a lack of culturability indicates the cells they are examining are dead.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biodegradation potential of the genus Rhodococcus.

              A large number of aromatic compounds and organic nitriles, the two groups of compounds covered in this review, are intermediates, products, by-products or waste products of the chemical and pharmaceutical industries, agriculture and the processing of fossil fuels. The majority of these synthetic substances (xenobiotics) are toxic and their release and accumulation in the environment pose a serious threat to living organisms. Bioremediation using various bacterial strains of the genus Rhodococcus has proved to be a promising option for the clean-up of polluted sites. The large genomes of rhodococci, their redundant and versatile catabolic pathways, their ability to uptake and metabolize hydrophobic compounds, to form biofilms, to persist in adverse conditions and the availability of recently developed tools for genetic engineering in rhodococci make them suitable industrial microorganisms for biotransformations and the biodegradation of many organic compounds. The peripheral and central catabolic pathways in rhodococci are characterized for each type of aromatics (hydrocarbons, phenols, halogenated, nitroaromatic, and heterocyclic compounds) in this review. Pathways involved in the hydrolysis of nitrile pollutants (aliphatic nitriles, benzonitrile analogues) and the corresponding enzymes (nitrilase, nitrile hydratase) are described in detail. Examples of regulatory mechanisms for the expression of the catabolic genes are given. The strains that efficiently degrade the compounds in question are highlighted and examples of their use in biodegradation processes are presented.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                25 January 2016
                2016
                : 11
                : 1
                : e0147593
                Affiliations
                [1 ]Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
                [2 ]Key Laboratory for Water Pollution Control and Environmental Safety in Zhejiang Province, Hangzhou 310058, China
                [3 ]College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
                [4 ]School of Medicine, Stanford Universtiy, Stanford, California 94305, USA
                Dong-A University, REPUBLIC OF KOREA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XMS CFS. Performed the experiments: XMS LG. Analyzed the data: XMS LXD KQ. Contributed reagents/materials/analysis tools: XMS LXD. Wrote the paper: XMS.

                Article
                PONE-D-15-39856
                10.1371/journal.pone.0147593
                4725852
                26808070
                32702ea1-64b9-486b-badb-57f430a39cc5
                © 2016 Su et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 September 2015
                : 6 January 2016
                Page count
                Figures: 6, Tables: 1, Pages: 19
                Funding
                The authors gratefully acknowledge the financial support provided by the Fundamental Research Funds for the Central Universities (2014QNA6012), the National Natural Science Foundation of China (41271334), the National High Technology Research and Development Program of China (2012AA06A203), and Zhejiang Provincial Natural Science Foundation of China (LR12D01001).
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Organisms
                Bacteria
                Actinobacteria
                Rhodococcus
                Medicine and Health Sciences
                Critical Care and Emergency Medicine
                Resuscitation
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Metabolic Pathways
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                Sequencing techniques
                RNA sequencing
                Research and analysis methods
                Molecular biology techniques
                Sequencing techniques
                RNA sequencing
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Polymerases
                RNA polymerase
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Transcriptome Analysis
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Transcriptome Analysis
                Biology and Life Sciences
                Cell Biology
                Oxidative Stress
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article