31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bones of the cranial vault appear to be highly conserved among tetrapod vertebrates. Moreover, bones identified with the same name are assumed to be evolutionarily homologous. However, recent developmental studies reveal a key difference in the embryonic origin of cranial vault bones between representatives of two amniote lineages, mammals and birds, thereby challenging this view. In the mouse, the frontal is derived from cranial neural crest (CNC) but the parietal is derived from mesoderm, placing the CNC–mesoderm boundary at the suture between these bones. In the chicken, this boundary is located within the frontal. This difference and related data have led several recent authors to suggest that bones of the avian cranial vault are misidentified and should be renamed. To elucidate this apparent conflict, we fate-mapped CNC and mesoderm in axolotl to reveal the contributions of these two embryonic cell populations to the cranial vault in a urodele amphibian. The CNC–mesoderm boundary in axolotl is located between the frontal and parietal bones, as in the mouse but unlike the chicken. If, however, the avian frontal is regarded instead as a fused frontal and parietal (i.e. frontoparietal) and the parietal as a postparietal, then the cranial vault of birds becomes developmentally and topologically congruent with those of urodeles and mammals. This alternative hypothesis of cranial vault homology is also phylogenetically consistent with data from the tetrapod fossil record, where frontal, parietal and postparietal bones are present in stem lineages of all extant taxa, including birds. It further implies that a postparietal may be present in most non-avian archosaurs, but fused to the parietal or supraoccipital as in many extant mammals.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Tissue origins and interactions in the mammalian skull vault.

          During mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal-parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we show that both sutures are formed at a neural crest-mesoderm interface: the frontal bones are neural crest-derived and the parietal bones mesodermal, with a tongue of neural crest between the two parietal bones. By detailed analysis of neural crest migration pathways using X-gal staining, and mesodermal tracing by DiI labelling, we show that the neural crest-mesodermal tissue juxtaposition that later forms the coronal suture is established at E9.5 as the caudal boundary of the frontonasal mesenchyme. As the cerebral hemispheres expand, they extend caudally, passing beneath the neural crest-mesodermal interface within the dermis, carrying with them a layer of neural crest cells that forms their meningeal covering. Exposure of embryos to retinoic acid at E10.0 reduces this meningeal neural crest and inhibits parietal ossification, suggesting that intramembranous ossification of this mesodermal bone requires interaction with neural crest-derived meninges, whereas ossification of the neural crest-derived frontal bone is autonomous. These observations provide new perspectives on skull evolution and on human genetic abnormalities of skull growth and ossification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Devonian tetrapod-like fish and the evolution of the tetrapod body plan.

            The relationship of limbed vertebrates (tetrapods) to lobe-finned fish (sarcopterygians) is well established, but the origin of major tetrapod features has remained obscure for lack of fossils that document the sequence of evolutionary changes. Here we report the discovery of a well-preserved species of fossil sarcopterygian fish from the Late Devonian of Arctic Canada that represents an intermediate between fish with fins and tetrapods with limbs, and provides unique insights into how and in what order important tetrapod characters arose. Although the body scales, fin rays, lower jaw and palate are comparable to those in more primitive sarcopterygians, the new species also has a shortened skull roof, a modified ear region, a mobile neck, a functional wrist joint, and other features that presage tetrapod conditions. The morphological features and geological setting of this new animal are suggestive of life in shallow-water, marginal and subaerial habitats.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The triple origin of skull in higher vertebrates: a study in quail-chick chimeras.

              We have used the quail-chick chimera technique to study the origin of the bones of the skull in the avian embryo. Although the contribution of the neural crest to the facial and visceral skeleton had been established previously, the origin of the vault of the skull (i.e. frontal and parietal bones) remained uncertain. Moreover formation of the occipito-otic region from either the somitic or the cephalic paraxial mesoderm had not been experimentally investigated. The data obtained in the present and previous works now allow us to assign a precise embryonic origin from either the mesectoderm, the paraxial cephalic mesoderm or the five first somites, to all the bones forming the avian skull. We distinguish a skull located in front of the extreme tip of the notochord which reaches the sella turcica and a skull located caudally to this boundary. The former ('prechordal skull') is derived entirely from the neural crest, the latter from the mesoderm (cephalic or somitic) in its ventromedial part ('chordal skull') and from the crest for the parietal bone and for part of the otic region. An important point enlighten in this work concerns the double origin of the corpus of the sphenoid in which basipresphenoid is of neural crest origin and the basipostsphenoid is formed by the cephalic mesoderm. Formation of the occipito-otic region of the skeleton is particularly complex and involves the cooperation of the five first somites and the paraxial mesoderm at the hind-brain level. The morphogenetic movements leading to the initial puzzle assembly could be visualized in a reproducible way by means of small grafts of quail mesodermal areas into chick embryos. The data reported here are discussed in the evolutionary context of the 'New Head' hypothesis of Gans and Northcutt (1983, Science, 220, 268-274).
                Bookmark

                Author and article information

                Journal
                R Soc Open Sci
                R Soc Open Sci
                RSOS
                royopensci
                Royal Society Open Science
                The Royal Society
                2054-5703
                August 2016
                10 August 2016
                10 August 2016
                : 3
                : 8
                : 160356
                Affiliations
                Museum of Comparative Zoology, Harvard University , 26 Oxford Street, Cambridge, MA 02138, USA
                Author notes
                Author for correspondence: Hillary C. Maddin e-mail: hillary.maddin@ 123456carleton.ca
                [†]

                Present address: Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.

                [‡]

                These authors contributed equally to this study.

                Author information
                http://orcid.org/0000-0002-6969-4907
                Article
                rsos160356
                10.1098/rsos.160356
                5108967
                27853617
                327a7664-0c70-4baf-b2ef-17d264c6318d
                © 2016 The Authors.

                Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : 21 May 2016
                : 12 July 2016
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada http://dx.doi.org/10.13039/501100000038
                Categories
                1001
                58
                70
                1005
                144
                Biology (Whole Organism)
                Research Article
                Custom metadata
                August, 2016

                cranial neural crest,mesoderm,skull,evolution,axolotl,transgenic

                Comments

                Comment on this article