35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Scaffolds for Bone Tissue Engineering: State of the art and new perspectives.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review is intended to give a state of the art description of scaffold-based strategies utilized in Bone Tissue Engineering. Numerous scaffolds have been tested in the orthopedic field with the aim of improving cell viability, attachment, proliferation and homing, osteogenic differentiation, vascularization, host integration and load bearing. The main traits that characterize a scaffold suitable for bone regeneration concerning its biological requirements, structural features, composition, and types of fabrication are described in detail. Attention is then focused on conventional and Rapid Prototyping scaffold manufacturing techniques. Conventional manufacturing approaches are subtractive methods where parts of the material are removed from an initial block to achieve the desired shape. Rapid Prototyping techniques, introduced to overcome standard techniques limitations, are additive fabrication processes that manufacture the final three-dimensional object via deposition of overlying layers. An important improvement is the possibility to create custom-made products by means of computer assisted technologies, starting from patient's medical images. As a conclusion, it is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval. PUBMED search terms utilized to write this review were: "Bone Tissue Engineering", "regenerative medicine", "bioactive scaffolds", "biomimetic scaffolds", "3D printing", "3D bioprinting", "vascularization" and "dentistry".

          Related collections

          Author and article information

          Journal
          Mater Sci Eng C Mater Biol Appl
          Materials science & engineering. C, Materials for biological applications
          Elsevier BV
          1873-0191
          0928-4931
          Sep 01 2017
          : 78
          Affiliations
          [1 ] RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy. Electronic address: livia.roseti@ior.it.
          [2 ] RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy. Electronic address: valentina.parisi@ior.it.
          [3 ] RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy. Electronic address: mauro.petretta@ior.it.
          [4 ] RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy. Electronic address: carola.cavallo@ior.it.
          [5 ] RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy. Electronic address: giovanna.desando@ior.it.
          [6 ] RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy. Electronic address: isabella.bartolotti@ior.it.
          [7 ] RAMSES Laboratory, Rizzoli RIT - Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy; Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricerca Codivilla Putti, Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy. Electronic address: brunella.grigolo@ior.it.
          Article
          S0928-4931(17)31722-8
          10.1016/j.msec.2017.05.017
          28575964
          32836db2-5a6d-48bd-b987-4245f7fd0462
          History

          Vascularization,Rapid Prototyping,Maxillofacial defects,Bone Tissue Engineering,3D scaffold

          Comments

          Comment on this article