28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Occurrence of Highly Conjugative IncX3 Epidemic Plasmid Carrying bla NDM in Enterobacteriaceae Isolates in Geographically Widespread Areas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The emergence of New Delhi metallo-β-lactamase (NDM) in common enterobacterial species is a major concern for healthcare. Early reports have revealed that the spread of NDM involved diverse and heterogeneous plasmids. Recently, the involvement of a rare, IncX3 subtype plasmid has been increasingly recognized. Here, we studied the prevalence of IncX plasmid subtypes in 198 carbapenem-resistant Enterobacteriaceae, originating from a territory-wide active surveillance in Hong Kong in 2016. The complete sequences and biological features of the bla NDM-carrying plasmids were investigated. A total of 62 NDM-type, 21 OXA-48 type, 14 IMP-type, 8 KPC-type, 4 IMI-type producers, and 89 non-carbapenemase-producers were tested for presence of IncX subtypes. IncX3 ( n = 60) was the most common subtype, followed by IncX4 ( n = 6) and IncX1 ( n = 2). The prevalence of IncX3 subtype in isolates producing NDM, other carbapenemase types and non-carbapenemase producers were 75.8, 21.3, and 3.4%, respectively ( P < 0.001). An IncX3 plasmid (size ∼50 kb) was confirmed to carry bla NDM in 47 isolates of different enterobacterial species. Thirteen IncX3 plasmids originating from six healthcare regions in Hong Kong were completely sequenced. The results showed that the IncX3 plasmids carrying bla NDM share a high degree of sequence identity with a previously reported plasmid, pNDM-HN380 (GenBank accession JX104760), over the backbone and genetic load regions. A blast search further revealed the occurrence of identical or nearly identical IncX3 plasmids carrying bla NDM in other part of China, Korea, Myanmar, India, Oman, Kuwait, Italy, and Canada. Two IncX3 carrying bla NDM were investigated further. Conjugation experiments demonstrated that the IncX3 plasmids could be efficiently transferred to multiple enterobacterial species at frequencies that are comparable or higher than the epidemic IncFII plasmid carrying bla CTX-M (pHK01). In addition, efficient transfer of the NDM plasmids occurred over a range of temperatures. In conclusion, this study demonstrated the important role played by IncX3 in the dissemination of NDM and the occurrence of pNDM-HN380-like plasmids in geographically widespread areas. The high mobility of IncX3 plasmid across different enterobacterial species highlights the ability of this plasmid replicon to be an important vehicle in worldwide dissemination of NDM.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study.

          Not all patients infected with NDM-1-positive bacteria have a history of hospital admission in India, and extended-spectrum β-lactamases are known to be circulating in the Indian community. We therefore measured the prevalence of the NDM-1 gene in drinking water and seepage samples in New Delhi. Swabs absorbing about 100 μL of seepage water (ie, water pools in streets or rivulets) and 15 mL samples of public tap water were collected from sites within a 12 km radius of central New Delhi, with each site photographed and documented. Samples were transported to the UK and tested for the presence of the NDM-1 gene, bla(NDM-1), by PCR and DNA probing. As a control group, 100 μL sewage effluent samples were taken from the Cardiff Wastewater Treatment Works, Tremorfa, Wales. Bacteria from all samples were recovered and examined for bla(NDM-1) by PCR and sequencing. We identified NDM-1-positive isolates, undertook susceptibility testing, and, where appropriate, typed the isolates. We undertook Inc typing on bla(NDM-1)-positive plasmids. Transconjugants were created to assess plasmid transfer frequency and its relation to temperature. From Sept 26 to Oct 10, 2010, 171 seepage samples and 50 tap water samples from New Delhi and 70 sewage effluent samples from Cardiff Wastewater Treatment Works were collected. We detected bla(NDM-1) in two of 50 drinking-water samples and 51 of 171 seepage samples from New Delhi; the gene was not found in any sample from Cardiff. Bacteria with bla(NDM-1) were grown from 12 of 171 seepage samples and two of 50 water samples, and included 11 species in which NDM-1 has not previously been reported, including Shigella boydii and Vibrio cholerae. Carriage by enterobacteria, aeromonads, and V cholera was stable, generally transmissible, and associated with resistance patterns typical for NDM-1; carriage by non-fermenters was unstable in many cases and not associated with typical resistance. 20 strains of bacteria were found in the samples, 12 of which carried bla(NDM-1) on plasmids, which ranged in size from 140 to 400 kb. Isolates of Aeromonas caviae and V cholerae carried bla(NDM-1) on chromosomes. Conjugative transfer was more common at 30°C than at 25°C or 37°C. The presence of NDM-1 β-lactamase-producing bacteria in environmental samples in New Delhi has important implications for people living in the city who are reliant on public water and sanitation facilities. International surveillance of resistance, incorporating environmental sampling as well as examination of clinical isolates, needs to be established as a priority. European Union. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The emerging NDM carbapenemases.

            Carbapenems were the last β-lactams retaining near-universal anti-Gram-negative activity, but carbapenemases are spreading, conferring resistance. New Delhi metallo-β-lactamase (NDM) enzymes are the latest carbapenemases to be recognized and since 2008 have been reported worldwide, mostly in bacteria from patients epidemiologically linked to the Indian subcontinent, where they occur widely in hospital and community infections, and also in contaminated urban water. The main type is NDM-1, but minor variants occur. NDM enzymes are present largely in Enterobacteriaceae, but also in non-fermenters and Vibrionaceae. Dissemination predominantly involves transfer of the blaNDM-1 gene among promiscuous plasmids and clonal outbreaks. Bacteria with NDM-1 are typically resistant to nearly all antibiotics, and reliable detection and surveillance are crucial. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health

              Background The emergence of carbapenemase producing bacteria, especially New Delhi metallo-β-lactamase (NDM-1) and its variants, worldwide, has raised amajor public health concern. NDM-1 hydrolyzes a wide range of β-lactam antibiotics, including carbapenems, which are the last resort of antibiotics for the treatment of infections caused by resistant strain of bacteria. Main body In this review, we have discussed bla NDM-1variants, its genetic analysis including type of specific mutation, origin of country and spread among several type of bacterial species. Wide members of enterobacteriaceae, most commonly Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and gram-negative non-fermenters Pseudomonas spp. and Acinetobacter baumannii were found to carry these markers. Moreover, at least seventeen variants of bla NDM-type gene differing into one or two residues of amino acids at distinct positions have been reported so far among different species of bacteria from different countries. The genetic and structural studies of these variants are important to understand the mechanism of antibiotic hydrolysis as well as to design new molecules with inhibitory activity against antibiotics. Conclusion This review provides a comprehensive view of structural differences among NDM-1 variants, which are a driving force behind their spread across the globe. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1012-8) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                20 September 2018
                2018
                : 9
                : 2272
                Affiliations
                [1] 1Department of Microbiology, Queen Mary Hospital, Carol Yu Centre for Infection, The University of Hong Kong , Hong Kong, China
                [2] 2Department of Clinical Pathology, Kwong Wah Hospital, Hospital Authority , Hong Kong, China
                [3] 3Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hospital Authority , Hong Kong, China
                [4] 4Department of Microbiology, Prince of Wales Hospital, Hospital Authority , Hong Kong, China
                [5] 5Department of Pathology, Tseung Kwan O Hospital, Hospital Authority , Hong Kong, China
                [6] 6Department of Clinical Pathology, Queen Elizabeth Hospital, Hospital Authority , Hong Kong, China
                Author notes

                Edited by: Miklos Fuzi, Semmelweis University, Hungary

                Reviewed by: Jean-Yves Madec, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), France; Maria Bagattini, Università degli Studi di Napoli Federico II, Italy

                *Correspondence: Pak-Leung Ho, plho@ 123456hku.hk

                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02272
                6158458
                30294321
                334b57f9-c367-4a31-9e34-91b7a127fbcd
                Copyright © 2018 Wang, Tong, Chow, Cheng, Tse, Wu, Lai, Luk, Tsang and Ho.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 June 2018
                : 05 September 2018
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 36, Pages: 8, Words: 0
                Funding
                Funded by: Health and Medical Research Fund 10.13039/501100005847
                Award ID: HKM-15-M10
                Award ID: CHP-PH-13
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                carbapenems,antimicrobial resistance epidemiology,molecular epidemiology,enterobacteriaceae,resistance plasmid

                Comments

                Comment on this article