Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Requirement of mammalian DNA polymerase-beta in base-excision repair.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthesis of DNA by DNA polymerase-beta is distributive on single-stranded DNA templates, but short DNA gaps with a 5' PO4 in the gap are filled processively to completion. In vitro studies have suggested a role of beta-polymerase in different types of DNA repair. However, the significance of these studies to the in vivo role of beta-polymerase has remained unclear. Because genetic studies are essential for determining the physiological role of a gene, we established embryonic fibroblast cell lines homozygous for a deletion mutation in the gene encoding DNA polymerase-beta. Extracts from these cell lines were found to be defective in uracil-initiated base-excision repair. The beta-polymerase-deleted cells are normal in viability and growth characteristics, although they exhibit increased sensitivity to monofunctional DNA-alkylating agents, but not to other DNA-damaging agents. Both the deficiency in base-excision repair and hypersensitivity to DNA-alkylating agents are rescued following stable transfection with a wild-type beta-polymerase minitransgene. These studies demonstrate that beta-polymerase functions specifically in base-excision repair in vivo.

          Related collections

          Author and article information

          Journal
          Nature
          Nature
          Springer Science and Business Media LLC
          0028-0836
          0028-0836
          Jan 11 1996
          : 379
          : 6561
          Affiliations
          [1 ] Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1068, USA.
          Article
          10.1038/379183a0
          8538772
          3356f6ff-efa7-4281-9c3c-5eec12900d71
          History

          Comments

          Comment on this article