24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Astragaloside IV Exerts Cognitive Benefits and Promotes Hippocampal Neurogenesis in Stroke Mice by Downregulating Interleukin-17 Expression via Wnt Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Stroke remains a leading cause of adult disability and the demand for stroke rehabilitation services is growing, and Astragaloside IV (As IV), a primary bioactive compound of Radix Astragali : Astragalus mongholicus Bunge (Fabaceae), may be a promising stroke therapy.

          Methods

          To access the effect of As IV on adult mice after ischemic stroke, a photochemical ischemia model was established on C57BL/6 mice, which were intravenously administered As IV for three consecutive days later. And then the cognitive benefits and hippocampal neurogenesis were evaluated by Morris Water Maze (MWM) test, Golgi staining, and immunohistochemical staining in vivo and in vitro. Furthermore, to find out the underlying mechanism, interleukin-17 (IL-17) knockout (KO) mice were used, through RNA sequence (RNA-seq) analysis and immunohistochemistry. Then the mechanism of neurogenesis promoted by As IV was observed by western blot both in vivo and in vitro. Specifically, As IV, recombinant mouse IL-17A and IL-17F, and Wingless/integrated (Wnt)-expressing virus was administered respectively in neural stem cells (NSCs), and then their diameters and protein expression of Nestin, IL-17, and Wnt pathway relevant protein, were measured in vitro.

          Results

          Administering As IV resulted in significant amelioration of stroke-induced cognitive deficits. And more hippocampal neurons with normal morphology, significant increments in the length of the apical dendrites, and the density of their spines were observed in As IV-treated mice. Furthermore, the immunohistochemistry staining of DCX/BrdU and Sox2/Nestin showed As IV could promote hippocampal neurogenesis and NSC proliferation after ischemic stroke, as well as in vitro. For the mechanism underlying, IL-17 expression was downregulated significantly by As IV treatment and knocking out IL-17 was associated with nervous regeneration and synapse repair according to the analysis of RNA-seq. Consistent to As IV treatment, knocking out IL-17 showed some promotion on hippocampal neurogenesis and proliferation of NSCs, with activating Wnt pathway after stoke. Finally, in vitro, NSCs’ diameters and protein expression of Nestin, IL-17, and Wnt pathway were regulated by either administering As IV or inhibiting IL-17.

          Conclusion

          As IV stimulates hippocampal neurogenesis after stroke, thus potentially facilitates brain to remodel and repair by downregulating IL-17 expression via Wnt pathway.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Advances and challenges in stroke rehabilitation

          Stroke remains a leading cause of adult disability and the demand for stroke rehabilitation services is growing. Substantial advances are yet to be made in stroke rehabilitation practice to meet this demand and improve patient outcomes relative to current care. Several large intervention trials targeting motor recovery report that participants' motor performance improved, but to a similar extent for both the intervention and control groups in most trials. These neutral results might reflect an absence of additional benefit from the tested interventions or the many challenges of designing and doing large stroke rehabilitation trials. Strategies for improving trial quality include new approaches to the selection of patients, control interventions, and endpoint measures. Although stroke rehabilitation research strives for better trials, interventions, and outcomes, rehabilitation practices continue to help patients regain independence after stroke.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and culture of adult neurons and neurospheres.

            Here we present a protocol for extraction and culture of neurons from adult rat or mouse CNS. The method proscribes an optimized protease digestion of slices, control of osmolarity and pH outside the incubator with Hibernate and density gradient separation of neurons from debris. This protocol produces yields of millions of cortical, hippocampal neurons or neurosphere progenitors from each brain. The entire process of neuron isolation and culture takes less than 4 h. With suitable growth factors, adult neuron regeneration of axons and dendrites in culture proceeds over 1-3 weeks to allow controlled studies in pharmacology, electrophysiology, development, regeneration and neurotoxicology. Adult neurospheres can be collected in 1 week as a source of neuroprogenitors ethically preferred over embryonic or fetal sources. This protocol emphasizes two differences between neuron differentiation and neurosphere proliferation: adhesion dependence and the differentiating power of retinyl acetate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Wnt Signaling Deregulation in the Aging and Alzheimer’s Brain

              Growing evidence suggests that synaptic signaling is compromised in the aging brain and in Alzheimer’s disease (AD), contributing to synaptic decline. Wnt signaling is a prominent pathway at the synapse and is required for synaptic plasticity and maintenance in the adult brain. In this review, we summarize the current knowledge on deregulation of Wnt signaling in the context of aging and AD. Emerging studies suggest that enhancing Wnt signaling could boost synaptic function during aging, and ameliorate synaptic pathology in AD. Although further research is needed to determine the precise contribution of deficient Wnt signaling to AD pathogenesis, targeting Wnt signaling components may provide novel therapeutic avenues for synapse protection or restoration in the brain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                03 April 2020
                2020
                : 11
                : 421
                Affiliations
                [1] 1Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University , Xi’an, China
                [2] 2School of Basic Medicine, Air Force Medical University , Xi’an, China
                Author notes

                Edited by: Heike Wulff, University of California, Davis, United States

                Reviewed by: Lei Chen, Fujian Agriculture and Forestry University, China; Yi Ding, Fourth Military Medical University, China

                *Correspondence: Changjun Gao, gaocj74@ 123456163.com ; Xude Sun, sunxude@ 123456fmmu.edu.cn

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                †These authors have contributed equally to this work

                Article
                10.3389/fphar.2020.00421
                7147333
                32317974
                337fa39e-90f9-4377-bc2b-f498fd2958a4
                Copyright © 2020 Sun, Zhang, Wang, Chen, Wang, Li, Li, Gao and Sun

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 December 2019
                : 19 March 2020
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 45, Pages: 14, Words: 6371
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31570845, 81971225, 81571183
                Funded by: Natural Science Foundation of Shaanxi Province 10.13039/501100007128
                Award ID: 2016ZDJC-16 , 2019JQ-985
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                astragaloside iv,hippocampus,il-17,neural stem cell,neurogenesis,stroke,synapse,wnt/β-catenin

                Comments

                Comment on this article