1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancing Essential Grains Yield for Sustainable Food Security and Bio-Safe Agriculture through Latest Innovative Approaches

      , , , , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A key concern in agriculture is how to feed the expanding population and safeguard the environment from the ill effects of climate change. To feed a growing global population, food production and security are significant problems, as food output may need to double by 2050. Thus, more innovative and effective approaches for increasing agricultural productivity (hence, food production) are required to meet the rising demand for food. The world’s most widely cultivated grains include corn, wheat, and rice, which serve as the foundation for basic foods. This review focuses on some of the key most up-to-date approaches that boost wheat, rice, corn, barley, and oat yields with insight into how molecular technology and genetics may raise the production and resource-efficient use of these important grains. Although red light management and genetic manipulation show maximal grain yield enhancement, other covered strategies including bacterial-nutrient management, solar brightening, facing abiotic stress through innovative agricultural systems, fertilizer management, harmful gas emissions reduction, photosynthesis enhancement, stress tolerance, disease resistance, and varietal improvement also enhance grain production and increase plant resistance to harmful environmental circumstances. This study also discusses the potential challenges of the addressed approaches and possible future perspectives.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Yield Trends Are Insufficient to Double Global Crop Production by 2050

          Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops—maize, rice, wheat, and soybean—that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Top 10 fungal pathogens in molecular plant pathology.

            The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Agricultural sustainability and intensive production practices.

              A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global usable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                July 2023
                June 26 2023
                : 13
                : 7
                : 1709
                Article
                10.3390/agronomy13071709
                343c9a09-f1c9-44ed-b6ae-cd6545040481
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article