23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Rapid Identification of Pathogens in Positive Blood Culture of Patients with Sepsis: Review and Meta-Analysis of the Performance of the Sepsityper Kit

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sepsis is one of the leading causes of deaths, and rapid identification (ID) of blood stream infection is mandatory to perform adequate antibiotic therapy. The advent of MALDI-TOF Mass Spectrometry for the rapid ID of pathogens was a major breakthrough in microbiology. Recently, this method was combined with extraction methods for pathogens directly from positive blood cultures. This review summarizes the results obtained so far with the commercial Sepsityper sample preparation kit, which is now approved for in vitro diagnostic use. Summarizing data from 21 reports, the Sepsityper kit allowed a reliable ID on the species level of 80% of 3320 positive blood culture bottles. Gram negative bacteria resulted consistently in higher ID rates (90%) compared to Gram positive bacteria (76%) or yeast (66%). No relevant misidentifications on the genus level were reported at a log(score)cut-off of 1.6. The Sepsityper kit is a simple and reproducible method which extends the MALDI-TOF technology to positive blood culture specimens and shortens the time to result by several hours or even days. In combination with antibiotic stewardship programs, this rapid ID allows a much faster optimization of antibiotic therapy in patients with sepsis compared to conventional workflows.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

          Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in or =10 reference spectra per bacterial species and a 1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock.

            We set out to assess the safety and the impact on in-hospital and 90-day mortality of antibiotic de-escalation in patients admitted to the ICU with severe sepsis or septic shock. We carried out a prospective observational study enrolling patients admitted to the ICU with severe sepsis or septic shock. De-escalation was defined as discontinuation of an antimicrobial agent or change of antibiotic to one with a narrower spectrum once culture results were available. To control for confounding variables, we performed a conventional regression analysis and a propensity score (PS) adjusted-multivariable analysis. A total of 712 patients with severe sepsis or septic shock at ICU admission were treated empirically with broad-spectrum antibiotics. Of these, 628 were evaluated (84 died before cultures were available). De-escalation was applied in 219 patients (34.9%). By multivariate analysis, factors independently associated with in-hospital mortality were septic shock, SOFA score the day of culture results, and inadequate empirical antimicrobial therapy, whereas de-escalation therapy was a protective factor [Odds-Ratio (OR) 0.58; 95% confidence interval (CI) 0.36-0.93). Analysis of the 403 patients with adequate empirical therapy revealed that the factor associated with mortality was SOFA score on the day of culture results, whereas de-escalation therapy was a protective factor (OR 0.54; 95% CI 0.33-0.89). The PS-adjusted logistic regression models confirmed that de-escalation therapy was a protective factor in both analyses. De-escalation therapy was also a protective factor for 90-day mortality. De-escalation therapy for severe sepsis and septic shock is a safe strategy associated with a lower mortality. Efforts to increase the frequency of this strategy are fully justified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates.

              The clinical impact of severe infections with yeasts and yeast-like fungi has increased, especially in immunocompromised hosts. In recent years, new antifungal agents with different and partially species-specific activity patterns have become available. Therefore, rapid and reliable species identification is essential for antifungal treatment; however, conventional biochemical methods are time-consuming and require considerable expertise. We evaluated matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid routine identification of clinical yeast isolates. A total of 18 type collection strains and 267 recent clinical isolates of Candida (n = 250), Cryptococcus, Saccharomyces, Trichosporon, Geotrichum, Pichia, and Blastoschizomyces spp. were identified by MALDI-TOF MS. The results were compared with those obtained by conventional phenotyping and biochemical tests, including the API ID 32C system (bioMérieux, Nürtingen, Germany). Starting with cells from single colonies, accurate species identification by MALDI-TOF MS was achieved for 247 of the clinical isolates (92.5%). The remaining 20 isolates required complementation of the reference database with spectra for the appropriate reference strains which were obtained from type culture collections or identified by 26S rRNA gene sequencing. The absence of a suitable reference strain from the MALDI-TOF MS database was clearly indicated by log(score) values too low for the respective clinical isolates; i.e., no false-positive identifications occurred. After complementation of the database, all isolates were unambiguously identified. The established API ID 32C biochemical diagnostic system identified 244 isolates in the first round. Overall, MALDI-TOF MS proved a most rapid and reliable tool for the identification of yeasts and yeast-like fungi, with the method providing a combination of the lowest expenditure of consumables, easy interpretation of results, and a fast turnaround time.
                Bookmark

                Author and article information

                Journal
                Int J Microbiol
                Int J Microbiol
                IJMICRO
                International Journal of Microbiology
                Hindawi Publishing Corporation
                1687-918X
                1687-9198
                2015
                27 April 2015
                : 2015
                : 827416
                Affiliations
                1Institut für Experimentelle Endokrinologie, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
                2Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
                Author notes

                Academic Editor: Maurizio Sanguinetti

                Article
                10.1155/2015/827416
                4426779
                26000017
                344452a8-2cf4-4984-a319-d82bab259da9
                Copyright © 2015 N. G. Morgenthaler and M. Kostrzewa.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 February 2015
                : 26 March 2015
                : 30 March 2015
                Categories
                Review Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article

                scite_

                Similar content134

                Cited by38

                Most referenced authors728