Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      CFTR dysfunction in cystic fibrosis and chronic obstructive pulmonary disease

      1 , 1 , 2 , 1
      Expert Review of Respiratory Medicine
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.

          Single murine and human intestinal stem cells can be expanded in culture over long time periods as genetically and phenotypically stable epithelial organoids. Increased cAMP levels induce rapid swelling of such organoids by opening the cystic fibrosis transmembrane conductor receptor (CFTR). This response is lost in organoids derived from cystic fibrosis (CF) patients. Here we use the CRISPR/Cas9 genome editing system to correct the CFTR locus by homologous recombination in cultured intestinal stem cells of CF patients. The corrected allele is expressed and fully functional as measured in clonally expanded organoids. This study provides proof of concept for gene correction by homologous recombination in primary adult stem cells derived from patients with a single-gene hereditary defect. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A functional CFTR assay using primary cystic fibrosis intestinal organoids.

            We recently established conditions allowing for long-term expansion of epithelial organoids from intestine, recapitulating essential features of the in vivo tissue architecture. Here we apply this technology to study primary intestinal organoids of people suffering from cystic fibrosis, a disease caused by mutations in CFTR, encoding cystic fibrosis transmembrane conductance regulator. Forskolin induces rapid swelling of organoids derived from healthy controls or wild-type mice, but this effect is strongly reduced in organoids of subjects with cystic fibrosis or in mice carrying the Cftr F508del mutation and is absent in Cftr-deficient organoids. This pattern is phenocopied by CFTR-specific inhibitors. Forskolin-induced swelling of in vitro-expanded human control and cystic fibrosis organoids corresponds quantitatively with forskolin-induced anion currents in freshly excised ex vivo rectal biopsies. Function of the CFTR F508del mutant protein is restored by incubation at low temperature, as well as by CFTR-restoring compounds. This relatively simple and robust assay will facilitate diagnosis, functional studies, drug development and personalized medicine approaches in cystic fibrosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly efficient generation of airway and lung epithelial cells from human pluripotent stem cells

              The ability to generate lung and airway epithelial cells from human pluripotent stem cells (hPSCs) would have applications in regenerative medicine, drug screening and modeling of lung disease, and studies of human lung development. We established, based on developmental paradigms, a highly efficient method for directed differentiation of hPSCs into lung and airway epithelial cells. Long-term differentiation in vivo and in vitro yielded basal, goblet, Clara, ciliated, type I and type II alveolar epithelial cells. Type II alveolar epithelial cells generated were capable of surfactant protein-B uptake and stimulated surfactant release, providing evidence of specific function. Inhibiting or removing agonists to signaling pathways critical for early lung development in the mouse—retinoic acid, Wnt and BMP—recapitulated defects in corresponding genetic mouse knockouts. The capability of this protocol to generate most cell types of the respiratory system suggests its utility for deriving patient-specific therapeutic cells.
                Bookmark

                Author and article information

                Journal
                Expert Review of Respiratory Medicine
                Expert Review of Respiratory Medicine
                Informa UK Limited
                1747-6348
                1747-6356
                May 08 2018
                June 03 2018
                May 23 2018
                June 03 2018
                : 12
                : 6
                : 483-492
                Affiliations
                [1 ] Lung Biology Group, Department of Clinical Microbiology, RCSI Education & Research Centre, Beaumont Hospital, Dublin 9, Ireland
                [2 ] Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
                Article
                10.1080/17476348.2018.1475235
                29750581
                34540222-e445-436b-bf3b-e6465b82f870
                © 2018
                History

                Comments

                Comment on this article