6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Supplemental effects of dietary nucleotides on intestinal health and growth performance of newly weaned pigs

      1 ,
      Journal of Animal Science
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intestinal challenges upon weaning would increase the needs of nucleotides for enterocyte proliferation, whereas de novo synthesis maybe insufficient. This study aimed to evaluate supplemental effects of dietary nucleotides on intestinal health and growth performance in newly weaned pigs. Fifty newly weaned pigs (19-d-old, 25 barrows and 25 gilts, 4.76 ± 0.42 kg BW) were individually housed and allotted to 5 treatments with increasing nucleotide supplementation (0, 50, 150, 250, and 500 mg/kg) based on a randomized complete block design with the initial BW and sex as blocks. Dietary nucleotides were provided from YT500 (Hinabiotech, Guangzhou, China). Pigs were fed for 21 d based on 2 phases (phase 1: 11 d and phase 2: 10 d) and experimental diets were formulated to meet or exceed nutrient requirements suggested by NRC (2012). Feed intake and BW were recorded. Titanium oxide (0.4%) was added as an indigestible marker from day 17. Plasma collected on day 18 was used to measure tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde (MDA). Pigs were euthanized on day 21 to collect tissues to evaluate TNF-α, IL-6, MDA, morphology, and crypt cell proliferation rate in the jejunum. Ileal digesta were collected to measure ileal nutrient digestibility. Data were analyzed using contrasts in the MIXED procedure of SAS. Nucleotide supplementation increased (P < 0.05) ADFI in phase 1. Nucleotide supplementation at 50 and 150 mg/kg increased (P < 0.05) ADG in phase 1, whereas increased (P < 0.05) ADFI and tended to increase (P = 0.082) ADG in overall. Increasing nucleotide supplementation changed (quadratic, P < 0.05) villus height-crypt ratio (at 247 mg/kg) and decreased (linear, P < 0.05) crypt cell proliferation rate in the jejunum. Increasing nucleotide supplementation reduced (P < 0.05) jejunal IL-6 (at 50 and 150 mg/kg) and tended to change (quadratic, P = 0.074) plasma MDA (at 231 mg/kg). Nucleotide supplementation at 50 and 150 mg/kg increased (P < 0.05) ileal digestibility of energy and ether extract. In conclusion, nucleotide supplementation at a range of 50 to 250 mg/kg in the diets seems to be beneficial to newly weaned pigs by enhancing growth performance possibly due to reduced intestinal inflammation and oxidative stress as well as improved intestinal villi structure and energy digestibility.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          IL-6 in inflammation, immunity, and disease.

          Interleukin 6 (IL-6), promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. Although its expression is strictly controlled by transcriptional and posttranscriptional mechanisms, dysregulated continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody was developed. Various clinical trials have since shown the exceptional efficacy of tocilizumab, which resulted in its approval for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab is expected to be effective for other intractable immune-mediated diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cytokines, inflammation, and pain.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amino acids and immune function.

              A deficiency of dietary protein or amino acids has long been known to impair immune function and increase the susceptibility of animals and humans to infectious disease. However, only in the past 15 years have the underlying cellular and molecular mechanisms begun to unfold. Protein malnutrition reduces concentrations of most amino acids in plasma. Findings from recent studies indicate an important role for amino acids in immune responses by regulating: (1) the activation of T lymphocytes, B lymphocytes, natural killer cells and macrophages; (2) cellular redox state, gene expression and lymphocyte proliferation; and (3) the production of antibodies, cytokines and other cytotoxic substances. Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality. Arginine, glutamine and cysteine precursors are the best prototypes. Because of a negative impact of imbalance and antagonism among amino acids on nutrient intake and utilisation, care should be exercised in developing effective strategies of enteral or parenteral provision for maximum health benefits. Such measures should be based on knowledge about the biochemistry and physiology of amino acids, their roles in immune responses, nutritional and pathological states of individuals and expected treatment outcomes. New knowledge about the metabolism of amino acids in leucocytes is critical for the development of effective means to prevent and treat immunodeficient diseases. These nutrients hold great promise in improving health and preventing infectious diseases in animals and humans.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Animal Science
                Oxford University Press (OUP)
                0021-8812
                1525-3163
                December 2019
                December 17 2019
                October 30 2019
                December 2019
                December 17 2019
                October 30 2019
                : 97
                : 12
                : 4875-4882
                Affiliations
                [1 ]Department of Animal Sciences, North Carolina State University, Raleigh, NC
                Article
                10.1093/jas/skz334
                6915224
                31665463
                345c3c41-47b9-429c-8da3-78334026ede7
                © 2019

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article