18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The phase behaviour and structure of a fluid confined between competing (solvophobic and solvophilic) walls

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We consider a model fluid with long-ranged, dispersion interparticle potentials confined between competing parallel walls. One wall is solvophilic and would be completely wet at bulk liquid-gas coexistence while the other is solvophobic and would be completely dry at bulk coexistence. When the wall separation L is large and the system is below the bulk critical temperature and close to bulk liquid-gas coexistence, a `delocalized interface' or `soft mode' phase forms with a liquid-gas interface near to the centre of the slit; this interacts with the walls via the power-law tails of the interparticle potentials. We use a coarse-grained effective Hamiltonian approach to derive explicit scaling expressions for the Gibbs adsorption, the surface tension, the solvation force and the total susceptibility. Using a non-local density functional theory (DFT) we calculate density profiles for the asymmetrically confined fluid at different chemical potentials and, for sufficiently large L, confirm the scaling predictions for the four thermodynamic quantities. Since the upper critical dimension for complete wetting with power-law potentials is <3 we argue that our (mean-field) scaling predictions should remain valid in treatments that incorporate the effects of interfacial fluctuations. As the wall separation L is decreased at bulk liquid-gas coexistence we predict a capillary evaporation transition from the `delocalized interface' phase to a dilute gas state with just a thin adsorbed film of liquid-like density next to the solvophilic wall. This transition is connected closely to the first order pre-wetting transition which occurs at the solvophilic wall in the semi-infinite system. We compare the phase diagram for the competing walls system with the phase diagrams for the fluid confined between identical solvophilic and identical solvophobic walls.

          Related collections

          Author and article information

          Journal
          16 July 2012
          Article
          10.1103/PhysRevE.86.031601
          1207.3647
          348b5c89-7b71-4337-b9d6-6b5eb97661d9

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          19 pages, 13 figures
          cond-mat.soft cond-mat.stat-mech

          Comments

          Comment on this article