27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.

          Related collections

          Most cited references354

          • Record: found
          • Abstract: found
          • Article: not found

          A germline-specific class of small RNAs binds mammalian Piwi proteins.

          Small RNAs associate with Argonaute proteins and serve as sequence-specific guides to regulate messenger RNA stability, protein synthesis, chromatin organization and genome structure. In animals, Argonaute proteins segregate into two subfamilies. The Argonaute subfamily acts in RNA interference and in microRNA-mediated gene regulation using 21-22-nucleotide RNAs as guides. The Piwi subfamily is involved in germline-specific events such as germline stem cell maintenance and meiosis. However, neither the biochemical function of Piwi proteins nor the nature of their small RNA guides is known. Here we show that MIWI, a murine Piwi protein, binds a previously uncharacterized class of approximately 29-30-nucleotide RNAs that are highly abundant in testes. We have therefore named these Piwi-interacting RNAs (piRNAs). piRNAs show distinctive localization patterns in the genome, being predominantly grouped into 20-90-kilobase clusters, wherein long stretches of small RNAs are derived from only one strand. Similar piRNAs are also found in human and rat, with major clusters occurring in syntenic locations. Although their function must still be resolved, the abundance of piRNAs in germline cells and the male sterility of Miwi mutants suggest a role in gametogenesis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PIWI-interacting RNAs: small RNAs with big functions

              In animals, PIWI-interacting RNAs (piRNAs) of 21-35 nucleotides in length silence transposable elements, regulate gene expression and fight viral infection. piRNAs guide PIWI proteins to cleave target RNA, promote heterochromatin assembly and methylate DNA. The architecture of the piRNA pathway allows it both to provide adaptive, sequence-based immunity to rapidly evolving viruses and transposons and to regulate conserved host genes. piRNAs silence transposons in the germ line of most animals, whereas somatic piRNA functions have been lost, gained and lost again across evolution. Moreover, most piRNA pathway proteins are deeply conserved, but different animals employ remarkably divergent strategies to produce piRNA precursor transcripts. Here, we discuss how a common piRNA pathway allows animals to recognize diverse targets, ranging from selfish genetic elements to genes essential for gametogenesis.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                14 August 2019
                August 2019
                : 11
                : 8
                : 1170
                Affiliations
                [1 ]Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
                [2 ]Department of Medical Sciences, University of Turin, 10124 Turin, Italy
                [3 ]Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
                [4 ]Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
                [5 ]Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
                [6 ]Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
                Author notes
                [* ]Correspondence: barbara.pardini@ 123456iigm.it (B.P.); gcalin@ 123456mdanderson.org (G.A.C.); Tel.: +1-713-792-5461 (G.A.C.)
                Author information
                https://orcid.org/0000-0001-9571-4257
                Article
                cancers-11-01170
                10.3390/cancers11081170
                6721601
                31416190
                34933a30-ea22-4d9f-85c7-56431cf4ce06
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 July 2019
                : 10 August 2019
                Categories
                Review

                noncoding rnas,body fluids,liquid biopsy,long noncoding rnas,micrornas,pirnas

                Comments

                Comment on this article