14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute effects of ionizing radiation on human endothelial barrier function

      abstract

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human vasculature is critical to healthy functioning of the tissues of the body and a major factor in maintaining homeostasis is the endothelial barrier. In the brain, the blood–brain barrier (BBB) is highly specialized in order to sustain the neural tissue.

          Here, we have examined the effects of radiation on BBB models using a unique variety of endpoints to assess barrier function. These include trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in two-dimensional monolayers and in three-dimensional tissue models) and permeability of molecules through the endothelial barrier. Two culture conditions were used to represent conditions on the inside or the lumen of vessels and conditions on the outside or ablumenal side of vessels. For the lumen, cells were cultured in serum and growth factor containing media, and for the ablumenal side of vessels, cells were cultured in serum-free defined media.

          Initial experiments with gamma rays in serum-free conditions revealed a previously unknown acute effect involving cell detachment and the loss of the clinically relevant cell adhesion molecule—cell platelet endothelial adhesion molecule (PECAM)-1 [ 1]. Gamma radiation (5 Gy) induced a rapid and transient decrease in TEER at 3 h, with effects also seen at the lower radiotherapy dose of 2 Gy. This dip in resistance correlated with the transient loss PECAM-1 in discrete areas where cells often detached from the monolayer leaving gaps. Loss in PECAM-1 occurred at least in part as detached microparticles. Redistribution of PECAM-1 microparticles was also seen in three-dimensional human tissue models. By 6 h, the remaining cells had migrated to reseal the barrier, coincident with TEER returning to control levels. Resealed monolayers contained fewer cells per unit area and their barrier function was weakened as corroborated by an increased permeability over 24 h. Because PECAM-1 is involved in barrier function and platelet aggregation, this effect is likely highly relevant to cancer radiotherapy using gamma rays.

          These studies were extended to include low linear energy transfer (LET) photons of X-rays and ion particles present in the space environment—low LET ion particles including high energy (1 GeV) protons and helium ions. X-rays under serum-free conditions also showed an acute response involving a dip in TEER at 3 h and the loss of PECAM-1 between cells as microparticles. Ion particles, however, did not show these effects of photons under serum-free conditions. Both protons and helium ions at doses up to 5 Gy did not produce this transient change in TEER or PECAM-1, although some longer term effects in TEER were noted.

          In the presence of serum and growth factors, however, all radiations tested showed short-term effects in TEER, that of a series of symmetrical peaks which diminished in size over several hours. For 1 GeV protons and helium ions, this effect could be fitted to an equation for under-damped oscillation, a pattern typical of a mechanism for timing of events in periodic processes. For gamma and X-rays, the underdamped oscillation was present but superimposed on a drop in resistance at 3 h similar to that seen in serum-free conditions.

          In conclusion, we have shown two acute effects of low LET radiation on the human endothelial barrier. First, a short-term effect of photons but not ion particles involving a single dip in TEER and the loss of PECAM-1 at 3 h after irradiation, and second an underdamped oscillation of TEER induced by both photons and ion particles that to date does not appear to be associated with the loss of PECAM-1 or any other junction molecules.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: not found

          Short term effects of gamma radiation on endothelial barrier function: uncoupling of PECAM-1.

          A limiting factor in the treatment of cancer with radiotherapy is the damage to surrounding normal tissue, particularly the vasculature. Vessel pathologies are a major feature of the side effects of radiotherapy and little is known about early events that could initiate subsequent diseases. We tested the hypothesis that gamma radiation has early damaging effects on the human endothelial barrier. Two models were used; Human Brain Microcapillary Endothelial Cells (HBMEC), and Human Umbilical Vein Endothelial Cells (HUVEC). Endpoints included Trans-Endothelial Electrical Resistance (TEER), barrier permeability to 10 kDa and 70 kDa tracer molecules, and the localization of F-actin, and junction proteins and the Platelet Endothelial Cell Adhesion Molecule (PECAM-1). Radiation induced a rapid and transient decrease in TEER at 3 h, with effects also seen at the radiotherapy doses. This dip in resistance correlated to the transient loss of PECAM-1 in discrete areas where cells often detached from the monolayer leaving gaps. Redistribution of PECAM-1 was also seen in 3-D human tissue models. By 6 h, the remaining cells had migrated to reseal the barrier, coincident with TEER returning to control levels. Resealed monolayers contained fewer cells per unit area and their barrier function was weakened as evidenced by an increased permeability over 24 h. This is the first demonstration of a transient and rapid effect of gamma radiation on human endothelial barriers that involves cell detachment and the loss of PECAM-1. Considering the association of cell adhesion molecules with vasculopathies, such an effect has the potential to be clinically relevant to the longer-term effects of radiotherapy. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark

            Author and article information

            Journal
            J Radiat Res
            J. Radiat. Res
            jrr
            jrr
            Journal of Radiation Research
            Oxford University Press
            0449-3060
            1349-9157
            March 2014
            March 2014
            : 55
            : Suppl 1 , Heavy Ion in Therapy and Space Radiation Symposium 2013
            : i97-i98
            Affiliations
            Center for Radiological Research, Columbia University, VC 11-205A/243, 630 West 168th Street, New York, NY 10032, USA
            Author notes
            [* ]Corresponding author. Email: pwg2@ 123456cumc.columbia.edu
            Article
            rrt171
            10.1093/jrr/rrt171
            3941523
            24586017
            34a4c051-b9aa-400b-a02a-5b545865d454
            © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Therapeutic Radiology and Oncology.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

            History
            Page count
            Pages: 2
            Categories
            Poster Session 03: CNS Risk

            Oncology & Radiotherapy
            endothelial barrier,radiation,charged particles
            Oncology & Radiotherapy
            endothelial barrier, radiation, charged particles

            Comments

            Comment on this article