18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How Glucosinolates Affect Generalist Lepidopteran Larvae: Growth, Development and Glucosinolate Metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multiple lepidopteran larvae feed successfully on plants containing glucosinolates despite the diverse array of toxic and deterrent breakdown products, such as isothiocyanates (ITCs), formed upon plant damage. While much is known about how specialist lepidopterans metabolize and tolerate glucosinolates, there is little information about the metabolic fate of these plant defense compounds in specialized herbivores. Employing 13C- and 14C-labeled 4-methylsulfinylbutyl glucosinolate (glucoraphanin), we identified and quantified the major detoxification products of glucosinolates and ITCs in selected specialized and generalist larvae. While specialists prevented glucosinolate hydrolysis or diverted hydrolysis to form nitriles, hydrolysis in generalists proceeded to toxic ITCs, of which a portion were conjugated to glutathione. However, a large amount of ITCs remained unmodified, which may have led to the observed negative effects on growth and development. The performance of two generalist-feeding caterpillars, Spodoptera littoralis (African cotton leafworm) and Mamestra brassicae (cabbage moth) on Arabidopsis thaliana Col-0 and various glucosinolate-deficient mutants was investigated from hatching until pupation. We found that glucosinolates negatively affected larval growth and development, but not survival, with aliphatic glucosinolates having stronger effects than indolic glucosinolates, and the combination of the two glucosinolate types being even more detrimental to growth and development. Curiously, last instar larvae grew better on wild type than on non-glucosinolate-containing plant lines, but this could not be attributed to a change in detoxification rate or feeding behavior. Glucosinolates thus appear to be effective defenses against generalist lepidopteran herbivores at least during most stages of larval development. Nevertheless, the reversal of negative effects in the oldest instar is intriguing, and further investigation of this phenomenon may shed light on how generalists adjust their physiology to feed on diets with many different types of plant defense compounds.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana.

          The glucosinolate content of various organs of the model plant Arabidopsis thaliana (L.) Heynh., Columbia (Col-0) ecotype, was analyzed at different stages during its life cycle. Significant differences were noted among organs in both glucosinolate concentration and composition. Dormant and germinating seeds had the highest concentration (2.5-3.3% by dry weight), followed by inflorescences, siliques (fruits), leaves and roots. While aliphatic glucosinolates predominated in most organs, indole glucosinolates made up nearly half of the total composition in roots and late-stage rosette leaves. Seeds had a very distinctive glucosinolate composition. They possessed much higher concentrations of several types of aliphatic glucosinolates than other organs, including methylthioalkyl and, hydroxyalkyl glucosinolates and compounds with benzoate esters than other organs. From a developmental perspective, older leaves had lower glucosinolate concentrations than younger leaves, but this was not due to decreasing concentrations in individual leaves with age (glucosinolate concentration was stable during leaf expansion). Rather, leaves initiated earlier in development simply had much lower rates of glucosinolate accumulation per dry weight gain throughout their lifetimes. During seed germination and leaf senescence, there were significant declines in glucosinolate concentration. The physiological and ecological significance of these findings is briefly discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From waste products to ecochemicals: fifty years research of plant secondary metabolism.

            The isolation of morphine ('principium somniferum') by Friedrich Wilhelm Sertürner about 200 years ago is generally accepted as the beginning of scientific phytochemistry (plant secondary products research). For about 150 years this research addressed almost exclusively the isolation and structure elucidation of new plant products. It had great impact on the development of modern organic chemistry and pharmaceutical industry and provided the chemical basis for biological research on plant secondary metabolism, which began about 50 years ago. The historical development of this field to its present state of knowledge will be considered in this review from three angles of vision: mechanistic, functional and evolutionary perspectives. Mechanistic research started on the metabolite level and was initiated by the availability of radioactive nuclides in the early 1950s. By means of sophisticated tracer techniques, the biosynthetic routs of most secondary pathways were outlined and provided the basis for the enzymatic characterization of biosynthetic pathways in the 1970s and 1980s, followed by the identification of the corresponding genes beginning in the late 1980s. During this 50-year period of intensive research a change of paradigm occurred addressing the question: why do plants synthesize this immense rich diversity of secondary metabolites comprising more than 200,000 structures? For a long time regarded as waste products or assigned with various other attributes their indispensable role as components of the survival strategy of plants in a mostly hostile environment appears now generally accepted. Along with the great progress in the field of chemical ecology, the emerging field of molecular evolution provided crucial evidence that during evolution of secondary metabolism genes encoding enzymes of plant's primary metabolism were duplicated, recruited and diversified for new functions under the everlasting and continuously changing selection pressure of the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.

              Glucosinolates (beta-thioglucoside-N-hydroxysulfates), the precursors of isothiocyanates, are present in sixteen families of dicotyledonous angiosperms including a large number of edible species. At least 120 different glucosinolates have been identified in these plants, although closely related taxonomic groups typically contain only a small number of such compounds. Glucosinolates and/or their breakdown products have long been known for their fungicidal, bacteriocidal, nematocidal and allelopathic properties and have recently attracted intense research interest because of their cancer chemoprotective attributes. Numerous reviews have addressed the occurrence of glucosinolates in vegetables, primarily the family Brassicaceae (syn. Cruciferae; including Brassica spp and Raphanus spp). The major focus of much previous research has been on the negative aspects of these compounds because of the prevalence of certain "antinutritional" or goitrogenic glucosinolates in the protein-rich defatted meal from widely grown oilseed crops and in some domesticated vegetable crops. There is, however, an opposite and positive side of this picture represented by the therapeutic and prophylactic properties of other "nutritional" or "functional" glucosinolates. This review addresses the complex array of these biologically active and chemically diverse compounds many of which have been identified during the past three decades in other families. In addition to the Brassica vegetables, these glucosinolates have been found in hundreds of species, many of which are edible or could provide substantial quantities of glucosinolates for isolation, for biological evaluation, and potential application as chemoprotective or other dietary or pharmacological agents.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                21 November 2017
                2017
                : 8
                : 1995
                Affiliations
                Department of Biochemistry, Max Planck Institute for Chemical Ecology , Jena, Germany
                Author notes

                Edited by: Stanislav Kopriva, University of Cologne, Germany

                Reviewed by: Brian Traw, University of Pittsburgh, United States; Tamara Gigolashvili, University of Cologne, Germany

                *Correspondence: Daniel G. Vassão, vassao@ 123456ice.mpg.de

                †Present address: Verena Jeschke, DynaMo Center of Excellence, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark; Emily E. Kearney, Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, United States; Katharina Schramm, Department of Botany, Weber State University, Ogden, UT, United States

                This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.01995
                5702293
                29209354
                34bf9389-1db5-4e75-ba70-dca4454f15b0
                Copyright © 2017 Jeschke, Kearney, Schramm, Kunert, Shekhov, Gershenzon and Vassão.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 October 2017
                : 07 November 2017
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 55, Pages: 12, Words: 0
                Funding
                Funded by: Max-Planck-Gesellschaft 10.13039/501100004189
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                spodoptera littoralis,mamestra brassicae,arabidopsis thaliana,glucoraphanin,glucobrassicin,isothiocyanate,detoxification,lepidoptera

                Comments

                Comment on this article