12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Biohybrid materials based on the intercalation of zein, the major storage protein in corn, into sodium-exchanged montmorillonite were prepared following two synthesis strategies. The first one made use of zein dissolved in 80% (v/v) ethanol/water solution, the usual solvent for this protein, while the second method is new and uses a sequential process that implies the previous separation of zein components in absolute ethanol. This treatment of zein with ethanol renders a soluble yellow phase and an agglomerate of insoluble components, which are able to intercalate the layered silicate when an aqueous dispersion of montmorillonite is added to the ethanol medium containing both phases. The diverse steps in this second route were investigated individually in order to understand the underlying mechanism that drives to the intercalation of this complex hydrophobic biomacromolecule into the hydrophilic interlayer space of sodium-exchanged montmorillonite. In addition to physicochemical characterization of the resulting materials, these biohybrid interfaces were also evaluated as biofillers in the preparation of diverse ecofriendly nanocomposites.

          Abstract

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Zein: the industrial protein from corn

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Zein in controlled drug delivery and tissue engineering.

              Controlled delivery of a bioactive to specific organ, cellular and sub-cellular level is a desired feature of a drug carrier system. In order to achieve this goal, formulation scientists search for better alternatives of biomaterials to deliver the therapeutics in more precise and controlled manner in vivo. Zein, a plant protein obtained from corn, is a useful biomaterial for several industrial applications including agriculture, cosmetics, packaging and pharmaceuticals. Being a hydrophobic protein, which is biodegradable, biocompatible, economic to use and with generally regarded safe "GRAS" status, it is an attractive biomaterial for human use. Novel biomedical applications of zein such as controlled and targeted delivery of bioactives and tissue engineering are the current research interests of the scientific fraternity. Here we attempt to review the literature on zein as a biopolymer for drug/vaccine/gene delivery and its applicability in tissue engineering.
                Bookmark

                Author and article information

                Contributors
                Role: Guest Editor
                Journal
                Beilstein J Nanotechnol
                Beilstein J Nanotechnol
                Beilstein Journal of Nanotechnology
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                2190-4286
                2016
                18 November 2016
                : 7
                : 1772-1782
                Affiliations
                [1 ]Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049-Madrid, Spain
                [2 ]present address: Universidade Federal do Maranhão, Departamento de Química – PPGQuim, LIM-Bionanos, 65080-805, São Luís, MA, Brazil
                Article
                10.3762/bjnano.7.170
                5238646
                35b520fe-4658-4039-b734-135c668b3877
                Copyright © 2016, Alcântara et al.; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: ( http://www.beilstein-journals.org/bjnano)

                History
                : 27 July 2016
                : 2 November 2016
                Categories
                Full Research Paper
                Nanoscience
                Nanotechnology

                biohybrids,biointerfaces,bionanocomposites,montmorillonite,zein

                Comments

                Comment on this article