0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative analysis of four complete mitogenomes from hoverfly genus Eristalinus with phylogenetic implications

      research-article
      ,
      Scientific Reports
      Nature Publishing Group UK
      Evolutionary genetics, Phylogenetics, Genome, Genomics, Entomology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genus Eristalinus is widely distributed globally. Four complete mitochondrial genomes (i.e., mitogenomes) of Eristalinus were sequenced and analyzed in this study: Eristalinus viridis (Coquillett, 1898), E. quinquestriatus (Fabricius, 1781), E. tarsalis (Macquart, 1855), and E. sp . Within these four sequenced mitogenomes, most protein-coding genes ( ND2, CO1, COX2, COX3, ND3, ND5, ND4, ND4L, ND6, and Cytb) began with a typical ATN (T/C/G/A) start codon and ended with a stop codon TAA or incomplete T, whereas ND1 began with the start codon TTG. ND3 ended with TAG. The secondary tRNA structure was that of a typical cloverleaf, and only the tRNA-Ser1 lacked a DHU arm. Three and five domains appeared in the 12S and 16S rRNA secondary structures, respectively. The phylogenetic relationships among the four Eristalinus species combined with the published mitogenomes of Syrphidae were reconstructed using the maximum likelihood and Bayesian inference methods, which support the monophyly of the subfamily Syrphinae but do not support that of the subfamily Eristalinae. Of note, Eristalini and Syrphini are monophyletic groups. The mitogenomes of E. viridis, E. quinquestriatus, E. sp ., and E. tarsalis are useful for determining the phylogenetic relationships and evolution of Syrphidae.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

          We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

            Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MrBayes 3: Bayesian phylogenetic inference under mixed models.

              MrBayes 3 performs Bayesian phylogenetic analysis combining information from different data partitions or subsets evolving under different stochastic evolutionary models. This allows the user to analyze heterogeneous data sets consisting of different data types-e.g. morphological, nucleotide, and protein-and to explore a wide variety of structured models mixing partition-unique and shared parameters. The program employs MPI to parallelize Metropolis coupling on Macintosh or UNIX clusters.
                Bookmark

                Author and article information

                Contributors
                lihu@snut.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 March 2022
                9 March 2022
                2022
                : 12
                : 4164
                Affiliations
                GRID grid.412500.2, ISNI 0000 0004 1757 2507, Shaanxi Key Laboratory of Bio-Resources, School of Biological Science & Engineering, , Shaanxi University of Technology, ; Hanzhong, 723000 Shaanxi China
                Article
                8172
                10.1038/s41598-022-08172-6
                8907203
                35264733
                35cc18c2-d994-4f23-956e-cec8ca72e595
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 April 2021
                : 3 March 2022
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                evolutionary genetics,phylogenetics,genome,genomics,entomology
                Uncategorized
                evolutionary genetics, phylogenetics, genome, genomics, entomology

                Comments

                Comment on this article