1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Behavioral and Anatomical Correlates of Chronic Episodic Hypoxia during Sleep in the Rat

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role played by chronic episodic hypoxia (EHYP) in the neurocognitive morbidity of obstructive sleep apnea (OSA) is unknown. Sleep recordings, Morris water maze experiments, and immunohistochemistry for NMDA NR1 glutamate receptor, c-fos protein, and apoptosis [nuclear immunoreactivity for single-stranded DNA and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay] were conducted in EHYP-exposed Sprague Dawley male rats. Exposures consisted of up to14 d in an environmental chamber in which O 2 concentrations were cycled between 10 and 21% every 90 sec or 30 min during 12 hr of daylight. For the remaining 12 hr, EHYP rats breathed room air, while controls spent 14 d in room air. Although EHYP induced significant disruption of sleep architecture during the initial day of exposure, sleep patterns normalized thereafter. Marked increases in apoptosis occurred in the CA1 hippocampal region (sevenfold) and cortex (Cx; eightfold) after 1–2 d of EHYP but not in CA3 and were followed by decreases toward normoxic levels by 14 d. Double labeling for NMDA NR1 and c-fos revealed marked architectural disorganization in CA1 and Cx with increases in c-fos over time. Rats exposed to EHYP displayed significantly longer escape latencies and swim path lengths to escape a hidden platform during 12 training trials given over 2 d. Differences in the performances of EHYP and control rats, although reduced, persisted after 14 d of recovery. We conclude that EHYP is associated with marked cellular changes over time within neural regions associated with cognitive functions. Furthermore, EHYP impaired performance during acquisition of a cognitive spatial task without affecting sensorimotor function. Such changes may underlie components of the learning and memory impairments found in OSA.

          Related collections

          Author and article information

          Journal
          J Neurosci
          J. Neurosci
          jneuro
          jneurosci
          J. Neurosci
          The Journal of Neuroscience
          Society for Neuroscience
          0270-6474
          1529-2401
          1 April 2001
          : 21
          : 7
          : 2442-2450
          Affiliations
          [ 1 ]Kosair Children's Hospital Research Institute, Departments of Pediatrics, Pharmacology, and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40202, and
          [ 2 ]Department of Psychology, Tulane University, New Orleans, Louisiana 70118
          Article
          PMC6762394 PMC6762394 6762394 5099
          10.1523/JNEUROSCI.21-07-02442.2001
          6762394
          11264318
          35f86e6c-e700-4a65-ae21-8a8d1a0752f6
          Copyright © 2001 Society for Neuroscience
          History
          : 26 September 2000
          : 13 December 2000
          : 11 January 2001
          Categories
          ARTICLE
          Behavioral/Systems
          Custom metadata
          5.00

          obstructive sleep apnea,cognitive impairment,sleep,water maze,apoptosis,immediate early genes,memory,intermittent hypoxia,glutamate receptors

          Comments

          Comment on this article