11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remembering with Gains and Losses: Effects of Monetary Reward and Punishment on Successful Encoding Activation of Source Memories

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          A unified statistical approach for determining significant signals in images of cerebral activation.

          We present a unified statistical theory for assessing the significance of apparent signal observed in noisy difference images. The results are usable in a wide range of applications, including fMRI, but are discussed with particular reference to PET images which represent changes in cerebral blood flow elicited by a specific cognitive or sensorimotor task. Our main result is an estimate of the P-value for local maxima of Gaussian, t, chi(2) and F fields over search regions of any shape or size in any number of dimensions. This unifies the P-values for large search areas in 2-D (Friston et al. [1991]: J Cereb Blood Flow Metab 11:690-699) large search regions in 3-D (Worsley et al. [1992]: J Cereb Blood Flow Metab 12:900-918) and the usual uncorrected P-value at a single pixel or voxel. Copyright (c) 1996 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FMRI visualization of brain activity during a monetary incentive delay task.

              Comparative studies have implicated striatal and mesial forebrain circuitry in the generation of autonomic, endocrine, and behavioral responses for incentives. Using blood oxygen level-dependent functional magnetic resonance imaging, we sought to visualize functional activation of these regions in 12 normal volunteers as they anticipated and responded for monetary incentives. Both individual and group analyses of time-series data revealed significant activation of striatal and mesial forebrain structures (including insula, caudate, putamen, and mesial prefrontal cortex) during trials involving both monetary rewards and punishments. In addition to these areas, during trials involving punishment, group analysis revealed activation foci in the anterior cingulate and thalamus. These results corroborate comparative studies which implicate striatal and mesial forebrain circuitry in the elaboration of incentive-driven behavior. This report also introduces a new paradigm for probing the functional integrity of this circuitry in humans.
                Bookmark

                Author and article information

                Journal
                Cereb Cortex
                Cereb. Cortex
                cercor
                cercor
                Cerebral Cortex (New York, NY)
                Oxford University Press
                1047-3211
                1460-2199
                May 2014
                10 January 2013
                10 January 2013
                : 24
                : 5
                : 1319-1331
                Affiliations
                [1 ]Department of Functional Brain Imaging,
                [2 ]Smart Ageing International Research Center, Institute of Development, Aging and Cancer (IDAC) , Tohoku University , Sendai 980-8575, Japan
                [3 ]Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University , Kyoto 606-8501, Japan and
                [4 ]Japan Society for the Promotion of Science , Tokyo 102-8471, Japan
                Author notes
                Address correspondence to Yayoi Shigemune, PhD, Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho, Sakyo-ku, Kyoto 606-8501, Japan. Email: shigemune.yayoi.5c@ 123456kyoto-u.ac.jp
                Article
                bhs415
                10.1093/cercor/bhs415
                3977621
                23314939
                365351a5-8c96-4868-87a1-33f984265caf
                © The Author 2013. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Categories
                Articles

                Neurology
                functional magnetic resonance imaging,punishment,reward,source memory
                Neurology
                functional magnetic resonance imaging, punishment, reward, source memory

                Comments

                Comment on this article