11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reversing allosteric communication: From detecting allosteric sites to inducing and tuning targeted allosteric response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The omnipresence of allosteric regulation together with the fundamental role of structural dynamics in this phenomenon have initiated a great interest to the detection of regulatory exosites and design of corresponding effectors. However, despite a general consensus on the key role of dynamics most of the earlier efforts on the prediction of allosteric sites are heavily crippled by the static nature of the underlying methods, which are either structure-based approaches seeking for deep surface pockets typical for “traditional” orthosteric drugs or sequence-based techniques exploiting the conservation of protein sequences. Because of the critical role of global protein dynamics in allosteric signaling, we investigate the hypothesis of reversibility in allosteric communication, according to which allosteric sites can be detected via the perturbation of the functional sites. The reversibility is tested here using our structure-based perturbation model of allostery, which allows one to analyze the causality and energetics of allosteric communication. We validate the “reverse perturbation” hypothesis and its predictive power on a set of classical allosteric proteins, then, on the independent extended benchmark set. We also show that, in addition to known allosteric sites, the perturbation of the functional sites unravels rather extended protein regions, which can host latent regulatory exosites. These protein parts that are dynamically coupled with functional sites can also be used for inducing and tuning allosteric communication, and an exhaustive exploration of the per-residue contributions to allosteric effects can eventually lead to the optimal modulation of protein activity. The site-effector interactions necessary for a specific mode and level of allosteric communication can be fine-tuned by adjusting the site’s structure to an available effector molecule and by the design or selection of an appropriate ligand.

          Author summary

          Recent advances in the development of allosteric drugs allow one to fully appreciate the sheer power of allosteric effectors in the avoiding toxicity, receptor desensitization and modulatory rather than on/off mode of action, compared to the traditional orthosteric compounds. The detection of allosteric sites is one of the major challenges in the quest for allosteric drugs. This work proposes a “reverse perturbation” approach for identifying allosteric sites as a result of a perturbation applied to the functional ones. We show that according to the traditional Monod-Changeux-Jacob’s definition of allostery, considering non-overlapping regulatory and functional sites is a critical prerequisite for the successful detection of allosteric sites. Using the reverse perturbation method, it is possible to determine wide protein regions with a potential to induce an allosteric response and to adjust its strength. Further studies on inducing and fine-tuning of allosteric signalling seem to be of a great importance for efficient design of non-orthosteric ligands in the development of novel drugs.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity.

          Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades and diverse geographic origin (geometric mean 90% inhibitory concentration of 2.0 nM). Maraviroc was active against 200 clinically derived HIV-1 envelope-recombinant pseudoviruses, 100 of which were derived from viruses resistant to existing drug classes. There was little difference in the sensitivity of the 200 viruses to maraviroc, as illustrated by the biological cutoff in this assay (= geometric mean plus two standard deviations [SD] of 1.7-fold). The mechanism of action of maraviroc was established using cell-based assays, where it blocked binding of viral envelope, gp120, to CCR5 to prevent the membrane fusion events necessary for viral entry. Maraviroc did not affect CCR5 cell surface levels or associated intracellular signaling, confirming it as a functional antagonist of CCR5. Maraviroc has no detectable in vitro cytotoxicity and is highly selective for CCR5, as confirmed against a wide range of receptors and enzymes, including the hERG ion channel (50% inhibitory concentration, >10 microM), indicating potential for an excellent clinical safety profile. Studies in preclinical in vitro and in vivo models predicted maraviroc to have human pharmacokinetics consistent with once- or twice-daily dosing following oral administration. Clinical trials are ongoing to further investigate the potential of using maraviroc for the treatment of HIV-1 infection and AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Allostery in disease and in drug discovery.

            Allostery is largely associated with conformational and functional transitions in individual proteins. This concept can be extended to consider the impact of conformational perturbations on cellular function and disease states. Here, we clarify the concept of allostery and how it controls physiological activities. We focus on the challenging questions of how allostery can both cause disease and contribute to development of new therapeutics. We aim to increase the awareness of the linkage between disease symptoms on the cellular level and specific aberrant allosteric actions on the molecular level and to emphasize the potential of allosteric drugs in innovative therapies. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders.

              Despite G-protein-coupled receptors (GPCRs) being among the most fruitful targets for marketed drugs, intense discovery efforts for several GPCR subtypes have failed to deliver selective drug candidates. Historically, drug discovery programmes for GPCR ligands have been dominated by efforts to develop agonists and antagonists that act at orthosteric sites for endogenous ligands. However, in recent years, there have been tremendous advances in the discovery of novel ligands for GPCRs that act at allosteric sites to regulate receptor function. These compounds provide high selectivity, novel modes of efficacy and may lead to novel therapeutic agents for the treatment of multiple psychiatric and neurological human disorders.
                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: InvestigationRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: SupervisionRole: ValidationRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                18 June 2018
                June 2018
                : 14
                : 6
                : e1006228
                Affiliations
                [1 ] Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix, Singapore
                [2 ] Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore
                Danish Cancer Society Research Center, DENMARK
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-6780-3313
                http://orcid.org/0000-0002-3315-8483
                Article
                PCOMPBIOL-D-18-00036
                10.1371/journal.pcbi.1006228
                6023240
                29912863
                36892a83-4438-4abe-a8f0-ecf1d201a3c6
                © 2018 Tee et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 January 2018
                : 23 May 2018
                Page count
                Figures: 10, Tables: 1, Pages: 26
                Funding
                Funding is provided by the Biomedical Research Council, Agency for Science, Technology, and Research (A*STAR). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Physical Sciences
                Physics
                Thermodynamics
                Free Energy
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzyme Chemistry
                Enzyme Regulation
                Allosteric Regulation
                Biology and Life Sciences
                Biochemistry
                Proteins
                Allosteric Regulation
                Physical Sciences
                Physics
                Condensed Matter Physics
                Solid State Physics
                Crystallography
                Crystal Structure
                Biology and Life Sciences
                Molecular Biology
                Macromolecular Structure Analysis
                Protein Structure
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzyme Chemistry
                Enzyme Regulation
                Engineering and Technology
                Equipment
                Communication Equipment
                Antennas
                Medicine and Health Sciences
                Pharmacology
                Drug Research and Development
                Drug Discovery
                Biology and Life Sciences
                Cell Biology
                Cell Physiology
                Cell Communication
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-06-28
                All relevant data are within the paper and its Supporting Information files.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article