5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combination ART-Induced Oxidative/Nitrosative Stress, Neurogenic Inflammation and Cardiac Dysfunction in HIV-1 Transgenic (Tg) Rats: Protection by Mg

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic effects of a combination antiretroviral therapy (cART = tenofovir/emtricitatine + atazanavir/ritonavir) on systemic and cardiac oxidative stress/injury in HIV-1 transgenic (Tg) rats and protection by Mg-supplementation were assessed. cART (low doses) elicited no significant effects in normal rats, but induced time-dependent oxidative/nitrosative stresses: 2.64-fold increased plasma 8-isoprostane, 2.0-fold higher RBC oxidized glutathione (GSSG), 3.2-fold increased plasma 3-nitrotyrosine (NT), and 3-fold elevated basal neutrophil superoxide activity in Tg rats. Increased NT staining occurred within cART-treated HIV-Tg hearts, and significant decreases in cardiac systolic and diastolic contractile function occurred at 12 and 18 weeks. HIV-1 expression alone caused modest levels of oxidative stress and cardiac dysfunction. Significantly, cART caused up to 24% decreases in circulating Mg in HIV-1-Tg rats, associated with elevated renal NT staining, increased creatinine and urea levels, and elevated plasma substance P levels. Strikingly, Mg-supplementation (6-fold) suppressed all oxidative/nitrosative stress indices in the blood, heart and kidney and substantially attenuated contractile dysfunction (>75%) of cART-treated Tg rats. In conclusion, cART caused significant renal and cardiac oxidative/nitrosative stress/injury in Tg-rats, leading to renal Mg wasting and hypomagnesemia, triggering substance P-dependent neurogenic inflammation and cardiac dysfunction. These events were effectively attenuated by Mg-supplementation likely due to its substance P-suppressing and Mg’s intrinsic anti-peroxidative/anti-calcium properties.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Plasma creatinine determination. A new and specific Jaffe reaction method.

          Jason Slot (1964)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction.

            We report, to our knowledge, the first HIV type 1 (HIV-1) transgenic (Tg) rat. Expression of the transgene, consisting of an HIV-1 provirus with a functional deletion of gag and pol, is regulated by the viral long terminal repeat. Spliced and unspliced viral transcripts were expressed in lymph nodes, thymus, liver, kidney, and spleen, suggesting that Tat and Rev are functional. Viral proteins were identified in spleen tissue sections by immunohistochemistry and gp120 was present in splenic macrophages, T and B cells, and in serum. Clinical signs included wasting, mild to severe skin lesions, opaque cataracts, neurological signs, and respiratory difficulty. Histopathology included a selective loss of splenocytes within the periarterial lymphoid sheath, increased apoptosis of endothelial cells and splenocytes, follicular hyperplasia of the spleen, lymphocyte depletion of mesenteric lymph nodes, interstitial pneumonia, psoriatic skin lesions, and neurological, cardiac, and renal pathologies. Immunologically, delayed-type hypersensitivity response to keyhole limpet hemocyanin was diminished. By contrast, Ab titers and proliferative response to recall antigen (keyhole limpet hemocyanin) were normal. The HIV-1 Tg rat thus has many similarities to humans infected with HIV-1 in expression of viral genes, immune-response alterations, and pathologies resulting from infection. The HIV-1 Tg rat may provide a valuable model for some of the pathogenic manifestations of chronic HIV-1 diseases and could be useful in testing therapeutic regimens targeted to stages of viral replication subsequent to proviral integration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of magnesium in hypertension and cardiovascular disease.

              Magnesium intake of 500 mg/d to 1000 mg/d may reduce blood pressure (BP) as much as 5.6/2.8 mm Hg. However, clinical studies have a wide range of BP reduction, with some showing no change in BP. The combination of increased intake of magnesium and potassium coupled with reduced sodium intake is more effective in reducing BP than single mineral intake and is often as effective as one antihypertensive drug in treating hypertension. Reducing intracellular sodium and calcium while increasing intracellular magnesium and potassium improves BP response. Magnesium also increases the effectiveness of all antihypertensive drug classes. It remains to be conclusively proven that cardiovascular disease such as coronary heart disease, ischemic stroke, and cardiac arrhythmias can be prevented or treated with magnesium intake. Preliminary evidence suggests that insulin sensitivity, hyperglycemia, diabetes mellitus, left ventricular hypertrophy, and dyslipidemia may be improved with increased magnesium intake. Various genetic defects in magnesium transport are associated with hypertension and possibly with cardiovascular disease. Oral magnesium acts as a natural calcium channel blocker, increases nitric oxide, improves endothelial dysfunction, and induces direct and indirect vasodilation. © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                15 August 2018
                August 2018
                : 19
                : 8
                : 2409
                Affiliations
                [1 ]Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, USA; phyjch@ 123456gwu.edu (J.J.C.); wweg@ 123456gwu.edu (W.B.W.); phyjhk@ 123456gwu.edu (J.H.K.)
                [2 ]Division of Cardiology, Children’s National Medical Center, Washington, DC 20010, USA; cspurney@ 123456cnmc.org
                Author notes
                [* ]Correspondence: itmak@ 123456gwu.edu ; Tel.: +1-202-994-2865
                Article
                ijms-19-02409
                10.3390/ijms19082409
                6121319
                30111743
                36910c79-a496-43f6-ad58-f517c4129ea4
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 June 2018
                : 13 August 2018
                Categories
                Article

                Molecular biology
                hiv-transgenic rat model,combined antiretroviral therapy (cart),oxidative stress,nitrosative stress,neurogenic inflammation,cardio-renal dysfunction,magnesium supplementation

                Comments

                Comment on this article