4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ethylene-Mediated Modulation of Bud Phenology, Cold Hardiness, and Hormone Biosynthesis in Peach ( Prunus persica)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spring frosts exacerbated by global climate change have become a constant threat to temperate fruit production. Delaying the bloom date by plant growth regulators (PGRs) has been proposed as a practical frost avoidance strategy. Ethephon is an ethylene-releasing PGR found to delay bloom in several fruit species, yet its use is often coupled with harmful effects, limiting its applicability in commercial tree fruit production. Little information is available regarding the mechanisms by which ethephon influences blooming and bud dormancy. This study investigated the effects of fall-applied ethephon on bud phenology, cold hardiness, and hormonal balance throughout the bud dormancy cycle in peach. Our findings concluded that ethephon could alter several significant aspects of peach bud physiology, including accelerated leaf fall, extended chilling accumulation period, increased heat requirements, improved cold hardiness, and delayed bloom date. Ethephon effects on these traits were primarily dependent on its concentration and application timing, with a high concentration (500 ppm) and an early application timing (10% leaf fall) being the most effective. Endogenous ethylene levels were induced significantly in the buds when ethephon was applied at 10% versus 90% leaf fall, indicating that leaves are essential for ethephon uptake. The hormonal analysis of buds at regular intervals of chilling hours (CH) and growing degree hours (GDH) also indicated that ethephon might exert its effects through an abscisic acid (ABA)-independent way in dormant buds. Instead, our data signifies the role of jasmonic acid (JA) in mediating budburst and bloom in peach, which also appears to be influenced by ethephon treatment. Overall, this research presents a new perspective in interpreting horticultural traits in the light of biochemical and molecular data and sheds light on the potential role of JA in bud dormancy, which deserves further attention in future studies that aim at mitigating spring frosts.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Role of proline under changing environments: a review.

          When exposed to stressful conditions, plants accumulate an array of metabolites, particularly amino acids. Amino acids have traditionally been considered as precursors to and constituents of proteins, and play an important role in plant metabolism and development. A large body of data suggests a positive correlation between proline accumulation and plant stress. Proline, an amino acid, plays a highly beneficial role in plants exposed to various stress conditions. Besides acting as an excellent osmolyte, proline plays three major roles during stress, i.e., as a metal chelator, an antioxidative defense molecule and a signaling molecule. Review of the literature indicates that a stressful environment results in an overproduction of proline in plants which in turn imparts stress tolerance by maintaining cell turgor or osmotic balance; stabilizing membranes thereby preventing electrolyte leakage; and bringing concentrations of reactive oxygen species (ROS) within normal ranges, thus preventing oxidative burst in plants. Reports indicate enhanced stress tolerance when proline is supplied exogenously at low concentrations. However, some reports indicate toxic effects of proline when supplied exogenously at higher concentrations. In this article, we review and discuss the effects of exogenous proline on plants exposed to various abiotic stresses. Numerous examples of successful application of exogenous proline to improve stress tolerance are presented. The roles played by exogenous proline under varying environments have been critically examined and reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany.

            Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development. The present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception. The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A molecular timetable for apical bud formation and dormancy induction in poplar.

              The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula x Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                22 June 2021
                July 2021
                : 10
                : 7
                : 1266
                Affiliations
                [1 ]Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Tech, School of Plant and Environmental Sciences, Winchester, VA 22602, USA; liujy4@ 123456vt.edu (J.L.); tabibul@ 123456vt.edu (M.T.I.); sangee7@ 123456vt.edu (S.S.)
                [2 ]Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; pratibha@ 123456nus.edu.sg (P.R.); prakash.kumar@ 123456nus.edu.sg (P.P.K.)
                [3 ]Apple Biotechnology, USDA-ARS-Appalachian Fruit Research Station, Kearneysville, WV 25430, USA; tim.artlip@ 123456usda.gov
                Author notes
                [* ]Correspondence: ssherif@ 123456vt.edu ; Tel.: +1-540-232-6035
                Author information
                https://orcid.org/0000-0002-0963-1664
                Article
                plants-10-01266
                10.3390/plants10071266
                8309013
                34206266
                36a57556-1452-43fa-b383-7168f3333531
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 09 May 2021
                : 14 June 2021
                Categories
                Article

                peach (prunus persica),bud dormancy,ethylene,spring frost,plant hormones

                Comments

                Comment on this article