16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relatedness facilitates cooperation in the subsocial spider, Stegodyphus tentoriicola

      research-article
      1 , 1 , 2 , 1 ,
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cooperative hunting and foraging in spiders is rare and prone to cheating such that the actions of selfish individuals negatively affect the whole group. The resulting social dilemma may be mitigated by kin selection since related individuals lose indirect fitness benefits by acting selfishly. Indeed, cooperation with genetic kin reduces the disadvantages of within-group competition in the subsocial spider Stegodyphus lineatus, supporting the hypothesis that high relatedness is an important pre-adaptation in the transition to sociality in spiders. In this study we examined the consequences of group size and relatedness on cooperative feeding in the subsocial spider S. tentoriicola, a species suggested to be at the transition to permanent sociality.

          Results

          We formed groups of 3 and 6 spiders that were either siblings or non-siblings. We found that increasing group size negatively affected feeding efficiency but that these negative effects were reduced in sib-groups. Sib groups were more likely to feed cooperatively and all group members grew more homogenously than groups of unrelated spiders. The measured differences did not translate into differential growth or mortality during the experimental period of 8 weeks.

          Conclusion

          The combination of our results with those from previous studies indicates that the conflict between individual interests and group interests may be reduced by nepotism and that the latter promote the maintenance of the social community.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological, behavioral, and biochemical aspects of insect hydrocarbons.

          This review covers selected literature from 1982 to the present on some of the ecological, behavioral, and biochemical aspects of hydrocarbon use by insects and other arthropods. Major ecological and behavioral topics are species- and gender-recognition, nestmate recognition, task-specific cues, dominance and fertility cues, chemical mimicry, and primer pheromones. Major biochemical topics include chain length regulation, mechanism of hydrocarbon formation, timing of hydrocarbon synthesis and transport, and biosynthesis of volatile hydrocarbon pheromones of Lepidoptera and Coleoptera. In addition, a section is devoted to future research needs in this rapidly growing area of science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The collective-risk social dilemma and the prevention of simulated dangerous climate change.

            Will a group of people reach a collective target through individual contributions when everyone suffers individually if the target is missed? This "collective-risk social dilemma" exists in various social scenarios, the globally most challenging one being the prevention of dangerous climate change. Reaching the collective target requires individual sacrifice, with benefits to all but no guarantee that others will also contribute. It even seems tempting to contribute less and save money to induce others to contribute more, hence the dilemma and the risk of failure. Here, we introduce the collective-risk social dilemma and simulate it in a controlled experiment: Will a group of people reach a fixed target sum through successive monetary contributions, when they know they will lose all their remaining money with a certain probability if they fail to reach the target sum? We find that, under high risk of simulated dangerous climate change, half of the groups succeed in reaching the target sum, whereas the others only marginally fail. When the risk of loss is only as high as the necessary average investment or even lower, the groups generally fail to reach the target sum. We conclude that one possible strategy to relieve the collective-risk dilemma in high-risk situations is to convince people that failure to invest enough is very likely to cause grave financial loss to the individual. Our analysis describes the social window humankind has to prevent dangerous climate change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eusociality: origin and consequences.

              In this new assessment of the empirical evidence, an alternative to the standard model is proposed: group selection is the strong binding force in eusocial evolution; individual selection, the strong dissolutive force; and kin selection (narrowly defined), either a weak binding or weak dissolutive force, according to circumstance. Close kinship may be more a consequence of eusociality than a factor promoting its origin. A point of no return to the solitary state exists, as a rule when workers become anatomically differentiated. Eusociality has been rare in evolution, evidently due to the scarcity of environmental pressures adequate to tip the balance among countervailing forces in favor of group selection. Eusociality in ants and termites in the irreversible stage is the key to their ecological dominance and has (at least in ants) shaped some features of internal phylogeny. Their colonies are consistently superior to solitary and preeusocial competitors, due to the altruistic behavior among nestmates and their ability to organize coordinated action by pheromonal communication.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2009
                27 October 2009
                : 9
                : 257
                Affiliations
                [1 ]Zoological Institute and Museum, Biozentrum Grindel, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
                [2 ]Department of Biological Sciences, Aarhus University, Ny Munkegade Building 540, 8000 Aarhus C, Denmark
                Article
                1471-2148-9-257
                10.1186/1471-2148-9-257
                2774699
                19860868
                36bcc236-e1b3-4c4b-95f3-84dd6c17745c
                Copyright © 2009 Ruch et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 June 2009
                : 27 October 2009
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article