40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biosynthesis of luminescent quantum dots in an earthworm.

      Nature nanotechnology
      Animals, Biotechnology, methods, Cadmium Compounds, metabolism, Cell Line, Environmental Exposure, Gastrointestinal Tract, chemistry, cytology, Histocytochemistry, Luminescent Agents, isolation & purification, Macrophages, Mice, Nanotechnology, Oligochaeta, Particle Size, Quantum Dots, Tellurium

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The synthesis of designer solid-state materials by living organisms is an emerging field in bio-nanotechnology. Key examples include the use of engineered viruses as templates for cobalt oxide (Co(3)O(4)) particles, superparamagnetic cobalt-platinum alloy nanowires and gold-cobalt oxide nanowires for photovoltaic and battery-related applications. Here, we show that the earthworm's metal detoxification pathway can be exploited to produce luminescent, water-soluble semiconductor cadmium telluride (CdTe) quantum dots that emit in the green region of the visible spectrum when excited in the ultraviolet region. Standard wild-type Lumbricus rubellus earthworms were exposed to soil spiked with CdCl(2) and Na(2)TeO(3) salts for 11 days. Luminescent quantum dots were isolated from chloragogenous tissues surrounding the gut of the worm, and were successfully used in live-cell imaging. The addition of polyethylene glycol on the surface of the quantum dots allowed for non-targeted, fluid-phase uptake by macrophage cells.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes.

          The selection and assembly of materials are central issues in the development of smaller, more flexible batteries. Cobalt oxide has shown excellent electrochemical cycling properties and is thus under consideration as an electrode for advanced lithium batteries. We used viruses to synthesize and assemble nanowires of cobalt oxide at room temperature. By incorporating gold-binding peptides into the filament coat, we formed hybrid gold-cobalt oxide wires that improved battery capacity. Combining virus-templated synthesis at the peptide level and methods for controlling two-dimensional assembly of viruses on polyelectrolyte multilayers provides a systematic platform for integrating these nanomaterials to form thin, flexible lithium ion batteries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial biosynthesis of cadmium sulfide nanocrystals.

            Semiconductor nanocrystals, which have unique optical and electronic properties, have potential for applications in the emerging field of nanoelectronics. To produce nanocrystals cheaply and efficiently, biological methods of synthesis are being explored. We found that E. coli, when incubated with cadmium chloride and sodium sulfide, have the capacity to synthesize intracellular cadmium sulfide (CdS) nanocrystals. The nanocrystals are composed of a wurtzite crystal phase with a size distribution of 2-5 nm. Nanocrystal biosynthesis increased about 20-fold in E. coli cells grown to stationary phase compared to late logarithmic phase. Our results highlight how different genetic and physiological parameters can enhance the formation of nanocrystals within bacterial cells.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art

                Bookmark

                Author and article information

                Comments

                Comment on this article