5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Unbiased proteomic and transcript analyses reveal that stathmin-1 silencing inhibits colorectal cancer metastasis and sensitizes to 5-fluorouracil treatment.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colorectal cancer metastasis is a major cause of mortality worldwide, which may only be controlled with novel methods limiting tumor dissemination and chemoresistance. High stathmin-1 (STMN1) expression was previously established as a hallmark of colorectal cancer progression and predictor of poor survival; however, the mechanism of action is less clear. This work demonstrates that STMN1 silencing arrests tumor-disseminative cascades by inhibiting multiple metastatic drivers, and repressing oncogenic and mesenchymal transcription. Using a sensitive iTRAQ labeling proteomic approach that quantified differential abundance of 4562 proteins, targeting STMN1 expression was shown to reinstate the default cellular program of metastatic inhibition, and promote cellular adhesion via amplification of hemidesmosomal junctions and intermediate filament tethering. Silencing STMN1 also significantly improved chemoresponse to the classical colorectal cancer therapeutic agent, 5FU, via a novel caspase-6 (CASP6)-dependent mechanism. Interestingly, the prometastatic function of STMN1 was independent of p53 but required phosphorylations at S25 or S38; abrogating phosphorylative events may constitute an alternative route to achieving metastatic inhibition. These findings establish STMN1 as a potential target in antimetastatic therapy, and demonstrate the power of an approach coupling proteomics and transcript analyses in the global assessment of treatment benefits and potential side-effects.

          Related collections

          Author and article information

          Journal
          Mol. Cancer Res.
          Molecular cancer research : MCR
          American Association for Cancer Research (AACR)
          1557-3125
          1541-7786
          Dec 2014
          : 12
          : 12
          Affiliations
          [1 ] Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
          [2 ] Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.
          [3 ] Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore. maxey_chung@nuhs.edu.sg.
          Article
          1541-7786.MCR-14-0088-T
          10.1158/1541-7786.MCR-14-0088-T
          25063586
          3733f8aa-f371-4923-bc3b-b889fff49fd0
          History

          Comments

          Comment on this article