Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes

          Background Plant protoplasts, a proven physiological and versatile cell system, are widely used in high-throughput analysis and functional characterization of genes. Green protoplasts have been successfully used in investigations of plant signal transduction pathways related to hormones, metabolites and environmental challenges. In rice, protoplasts are commonly prepared from suspension cultured cells or etiolated seedlings, but only a few studies have explored the use of protoplasts from rice green tissue. Results Here, we report a simplified method for isolating protoplasts from normally cultivated young rice green tissue without the need for unnecessary chemicals and a vacuum device. Transfections of the generated protoplasts with plasmids of a wide range of sizes (4.5-13 kb) and co-transfections with multiple plasmids achieved impressively high efficiencies and allowed evaluations by 1) protein immunoblotting analysis, 2) subcellular localization assays, and 3) protein-protein interaction analysis by bimolecular fluorescence complementation (BiFC) and firefly luciferase complementation (FLC). Importantly, the rice green tissue protoplasts were photosynthetically active and sensitive to the retrograde plastid signaling inducer norflurazon (NF). Transient expression of the GFP-tagged light-related transcription factor OsGLK1 markedly upregulated transcript levels of the endogeneous photosynthetic genes OsLhcb1, OsLhcp, GADPH and RbcS, which were reduced to some extent by NF treatment in the rice green tissue protoplasts. Conclusions We show here a simplified and highly efficient transient gene expression system using photosynthetically active rice green tissue protoplasts and its broad applications in protein immunoblot, localization and protein-protein interaction assays. These rice green tissue protoplasts will be particularly useful in studies of light/chloroplast-related processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of phytohormones in insect-specific plant reactions.

            The capacity to perceive and respond is integral to biological immune systems, but to what extent can plants specifically recognize and respond to insects? Recent findings suggest that plants possess surveillance systems that are able to detect general patterns of cellular damage as well as highly specific herbivore-associated cues. The jasmonate (JA) pathway has emerged as the major signaling cassette that integrates information perceived at the plant-insect interface into broad-spectrum defense responses. Specificity can be achieved via JA-independent processes and spatio-temporal changes of JA-modulating hormones, including ethylene (ET), salicylic acid (SA), abscisic acid (ABA), auxin, cytokinins (CK), brassinosteroids (BR) and gibberellins (GB). The identification of receptors and ligands and an integrative view of hormone-mediated response systems are crucial to understand specificity in plant immunity to herbivores. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant pattern recognition receptor complexes at the plasma membrane.

              A key feature of innate immunity is the ability to recognize and respond to potential pathogens in a highly sensitive and specific manner. In plants, the activation of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) elicits a defense programme known as PAMP-triggered immunity (PTI). Although only a handful of PAMP-PRR pairs have been defined, all known PRRs are modular transmembrane proteins containing ligand-binding ectodomains. It is becoming clear that PRRs do not act alone but rather function as part of multi-protein complexes at the plasma membrane. Recent studies describing the molecular interactions and protein modifications that occur between PRRs and their regulatory proteins have provided important mechanistic insight into how plants avoid infection and achieve immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                New Phytologist
                New Phytol
                Wiley
                0028-646X
                1469-8137
                October 2021
                August 19 2021
                October 2021
                : 232
                : 2
                : 802-817
                Affiliations
                [1 ]Institute of Plant Protection Jiangsu Academy of Agricultural Sciences Jiangsu Key Laboratory for Food and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and Technology Nanjing 210014 China
                [2 ]College of Plant Protection Nanjing Agricultural University Nanjing 210014 China
                [3 ]Guangdong Key Laboratory of New Technology in Rice Breeding Guangzhou 510640 China
                [4 ]School of BioSciences Bio21 Institute University of Melbourne Parkville VIC 3010 Australia
                [5 ]Department of Entomology Texas A&M University College Station TX 77843 USA
                Article
                10.1111/nph.17620
                34260062
                3746a7db-fc1d-489b-a7e5-1979e36d4c39
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article