26
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Controlled drug delivery technology of proteins/peptides from biodegradable nanoparticles has emerged as one of the eminent areas to overcome formulation associated problems of the macromolecules. The purpose of the present investigation was to develop protein-loaded nanoparticles using biodegradable polymer poly l-lactide-co-glycolidic acid (PLGA) with bovine serum albumin (BSA) as a model protein. Despite many studies available with PLGA-based protein-loaded nanoparticles, production know-how, process parameters, protein loading, duration of protein release, narrowing polydispersity of particles have not been investigated enough to scale up manufacturing of protein-loaded nanoparticles in formulations. Different process parameters such as protein/polymer ratio, homogenizing speed during emulsifications, particle surface morphology and surface charges, particle size analysis and in-vitro protein release were investigated. The in-vitro protein release study suggests that release profile of BSA from nanoparticles could be modulated by changing protein-polymer ratios and/or by varying homogenizing speed during multiple-emulsion preparation technique. The formulation prepared with protein-polymer ratio of 1:60 at 17,500 rpm gave maximum protein-loading, minimum polydispersion with maximally sustained protein release pattern, among the prepared formulations. Decreased (10,000 rpm) or enhanced (24,000 rpm) homogenizing speeds resulted in increased polydispersion with larger particles having no better protein-loading and -release profiles in the present study.

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Biodegradable nanoparticles for drug and gene delivery to cells and tissue.

          Biodegradable nanoparticles formulated from poly (D,L-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted/localized delivery of different agents including plasmid DNA, proteins and peptides and low molecular weight compounds. Research about the mechanism of intracellular uptake of nanoparticles, their trafficking and sorting into different intracellular compartments, and the mechanism of enhanced therapeutic efficacy of nanoparticle-encapsulated agent at cellular level is more recent and is the primary focus of the review. Recent studies in our laboratory demonstrated rapid escape of PLGA nanoparticles from the endo-lysosomal compartment into cytosol following their uptake. Based on the above mechanism, various potential applications of nanoparticles for delivery of therapeutic agents to the cells and tissue are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Freeze-drying of nanoparticles: formulation, process and storage considerations.

            Freeze-drying has been considered as a good technique to improve the long-term stability of colloidal nanoparticles. The poor stability in an aqueous medium of these systems forms a real barrier against the clinical use of nanoparticles. This article reviews the state of the art of freeze-drying nanoparticles. It discusses the most important parameters that influence the success of freeze-drying of these fragile systems, and provides an overview of nanoparticles freeze-drying process and formulation strategies with a focus on the impact of formulation and process on particle stability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.

              A considerable research has been conducted on drug delivery by biodegradable polymeric devices, following the entry of bioresorbable surgical sutures in the market about two decades ago. Amongst the different classes of biodegradable polymers, the thermoplastic aliphatic poly(esters) like poly(lactide) (PLA), poly(glycolide) (PGA), and especially the copolymer of lactide and glycolide, poly(lactide-co-glycolide) (PLGA) have generated immense interest due to their favorable properties such as good biocompatibility, biodegradability, and mechanical strength. Also, they are easy to formulate into different devices for carrying a variety of drug classes such as vaccines, peptides, proteins, and micromolecules. Also, they have been approved by the Food and Drug Administration (FDA) for drug delivery. This review discusses the various traditional and novel techniques (such as in situ microencapsulation) of preparing various drug loaded PLGA devices, with emphasis on preparing microparticles. Also, certain issues about other related biodegradable polyesters are discussed.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                December 2008
                : 3
                : 4
                : 487-496
                Affiliations
                Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
                Author notes
                Correspondence: Biswajit Mukherjee, Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700 032, West Bengal, India, Tel +91 033 2414 6677, Fax +91 033 2414 6677, Email biswajit55@ 123456yahoo.com
                Article
                ijn-3-487
                10.2147/IJN.S3938
                2636584
                19337417
                37959216-4cc9-409b-adfe-3abaee68bf58
                © 2008 Dove Medical Press Limited. All rights reserved
                History
                Categories
                Original Research

                Molecular medicine
                bovine serum albumin (bsa),poly-l-lactide-co-glycolidic acid (plga),nanoparticles

                Comments

                Comment on this article