25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor-Associated Macrophages: Recent Insights and Therapies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophages, which have functions of engulfing and digesting foreign substances, can clear away harmful matter, including cellular debris and tumor cells. Based on the condition of the internal environment, circulating monocytes give rise to mature macrophages, and when they are recruited into the tumor microenvironment and in suitable conditions, they are converted into tumor-associated macrophages (TAMs). Generally, macrophages grow into two main groups called classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 and a small fraction of M1 cells, also known as TAMs, not only lack the function of phagocytizing tumor cells but also help these tumor cells escape from being killed and help them spread to other tissues and organs. In this review, we introduce several mechanisms by which macrophages play a role in the immune regulation of tumor cells, including both killing factors and promoting effects. Furthermore, the targeted therapy for treating tumors based on macrophages is also referred to in our review. We confirm that further studies of macrophage-focused therapeutic strategies and their use in clinical practice are needed to verify their superior efficacy and potential in cancer treatment.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation

          Cytokines are among the most important effector and messenger molecules in the immune system. They profoundly participate in immune responses during infection and inflammation, protecting against or contributing to diseases such as allergy, autoimmunity, and cancer. Manipulating cytokine pathways, therefore, is one of the most effective strategies to treat various diseases. IL-10 family cytokines exert essential functions to maintain tissue homeostasis during infection and inflammation through restriction of excessive inflammatory responses, upregulation of innate immunity, and promotion of tissue repairing mechanisms. Their important functions in diseases are supported by data from many preclinical models, human genetic studies, and clinical interventions. Despite significant efforts, however, there is still no clinically approved therapy through manipulating IL-10 family cytokines. Here, we summarize the recent progress in understanding the biology of this family of cytokines, suggesting more specific strategies to maneuver these cytokines for the effective treatment of inflammatory diseases and cancers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosome mediated communication within the tumor microenvironment.

            It is clear that exosomes (endosome derived vesicles) serve important roles in cellular communication both locally and distally and that the exosomal process is abnormal in cancer. Cancer cells are not malicious cells; they are cells that represent 'survival of the fittest' at its finest. All of the mutations, abnormalities, and phenomenal adaptations to a hostile microenvironment, such as hypoxia and nutrient depletion, represent the astute ability of cancer cells to adapt to their environment and to intracellular changes to achieve a single goal - survival. The aberrant exosomal process in cancer represents yet another adaptation that promotes survival of cancer. Cancer cells can secrete more exosomes than healthy cells, but more importantly, the content of cancer cells is distinct. An illustrative distinction is that exosomes derived from cancer cells contain more microRNA than healthy cells and unlike exosomes released from healthy cells, this microRNA can be associated with the RNA-induced silencing complex (RISC) which is required for processing mature and biologically active microRNA. Cancer derived exosomes have the ability to transfer metastatic potential to a recipient cell and cancer exosomes function in the physical process of invasion. In this review we conceptualize the aberrant exosomal process (formation, content selection, loading, trafficking, and release) in cancer as being partially attributed to cancer specific differences in the endocytotic process of receptor recycling/degradation and plasma membrane remodeling and the function of the endosome as a signaling entity. We discuss this concept and, to advance comprehension of exosomal function in cancer as mediators of communication, we detail and discuss exosome biology, formation, and communication in health and cancer; exosomal content in cancer; exosomal biomarkers in cancer; exosome mediated communication in cancer metastasis, drug resistance, and interfacing with the immune system; and discuss the therapeutic manipulation of exosomal content for cancer treatment including current clinical trials of exosomal therapeutics. Often referred to as cellular nanoparticles, understanding exosomes, and how cancer cells use these cellular nanoparticles in communication is at the cutting edge frontier of advancing cancer biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy

              Exciting progress in the field of cancer immunotherapy has renewed the urgency of the need for basic studies of immunoregulation in both adaptive cell lineages and innate cell lineages. Here we found a central role for major histocompatibility complex (MHC) class I in controlling the phagocytic function of macrophages. Our results demonstrated that expression of the common MHC class I component β2-microglobulin (β2M) by cancer cells directly protected them from phagocytosis. We further showed that this protection was mediated by the inhibitory receptor LILRB1, whose expression was upregulated on the surface of macrophages, including tumor-associated macrophages. Disruption of either MHC class I or LILRB1 potentiated phagocytosis of tumor cells both in vitro and in vivo, which defines the MHC class I-LILRB1 signaling axis as an important regulator of the effector function of innate immune cells, a potential biomarker for therapeutic response to agents directed against the signal-regulatory protein CD47 and a potential target of anti-cancer immunotherapy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                25 February 2020
                2020
                : 10
                : 188
                Affiliations
                [1] 1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu, China
                [2] 2State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Sichuan University , Chengdu, China
                Author notes

                Edited by: Bernd Kaina, Johannes Gutenberg University Mainz, Germany

                Reviewed by: Sabine Grösch, Goethe University Frankfurt, Germany; Debora Decote-Ricardo, Universidade Federal Rural Do Rio de Janeiro, Brazil

                *Correspondence: Xikun Zhou xikunzhou@ 123456scu.edu.cn

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology

                †These authors have contributed equally to this work

                Article
                10.3389/fonc.2020.00188
                7052362
                32161718
                37e95a71-90be-4b53-8a6a-89d647bca210
                Copyright © 2020 Zhou, Tang, Gao, Li, Feng and Zhou.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 October 2019
                : 04 February 2020
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 86, Pages: 13, Words: 10345
                Funding
                Funded by: National Major Scientific and Technological Special Project for Significant New Drugs Development
                Award ID: 2018ZX09201018-013
                Funded by: Excellent Young Scientist Foundation of Sichuan University
                Award ID: 2017SCU04A16
                Funded by: Innovative Spark Foundation of Sichuan University
                Award ID: 2018SCUH0032
                Funded by: National Key Research Program of China
                Award ID: 2017YFC0840100
                Award ID: 2017YFC0840107
                Funded by: Sichuan University Training Program of Innovation and Entrepreneurship for Undergraduates
                Award ID: C2018101921
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                macrophages,tumors,tumor-associated macrophages,immunity,immunity therapy
                Oncology & Radiotherapy
                macrophages, tumors, tumor-associated macrophages, immunity, immunity therapy

                Comments

                Comment on this article