Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance.

      The Journal of clinical investigation
      American Society for Clinical Investigation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCε substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCε in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (InsrT1150A mice) were protected from high fat diet-induced hepatic insulin resistance. InsrT1150A mice also displayed increased insulin signaling, suppression of hepatic glucose production, and increased hepatic glycogen synthesis compared with WT controls during hyperinsulinemic clamp studies. These data reveal a critical pathophysiological role for INSR Thr1160 phosphorylation and provide further mechanistic links between PKCε and INSR in mediating NAFLD-induced hepatic insulin resistance.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found

          Epidemiology of Non-Alcoholic Fatty Liver Disease

          Non-alcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease worldwide. The prevalence of NAFLD in the general population of Western countries is 20–30%. About 2–3% of the general population is estimated to have non-alcoholic steatohepatitis (NASH), which may progress to liver cirrhosis and hepatocarcinoma. As a rule, the prevalence of NAFLD is higher in males and increases with increasing age, and it is influenced by the diagnostic method and the characteristics of the population, especially lifestyle habits. Population-based studies provide better estimates of the prevalence of NAFLD as compared to autoptic and clinical studies, but few such studies have been performed to date. The diagnosis of NAFLD in population studies is usually obtained by ultrasonography, which is known to underestimate the prevalence of fatty liver. The Dallas Heart Study and the Dionysos Study reported that 30% of the adults in the USA and 25% in Italy have NAFLD. In these studies, 79% and 55% of patients with NAFLD had normal aminotransferase levels, showing that liver enzymes are not surrogate markers of NAFLD in the general population. Noninvasive markers such as the fatty liver index obtained from the Dionysos Study may be useful to screen for NAFLD in the general population. The most important risk factors for NAFLD are male gender, age, obesity, insulin resistance and the cardiometabolic alterations that define the metabolic syndrome. The prevalence of NAFLD is 80–90% in obese adults, 30–50% in patients with diabetes and up to 90% in patients with hyperlipidemia. The prevalence of NAFLD among children is 3–10%, rising up to 40–70% among obese children. Moreover, pediatric NAFLD increased from about 3% a decade ago to 5% today, with a male-to-female ratio of 2:1. The incidence and natural history of NAFLD are still not well defined, but it is recognized that the majority of individuals with NAFLD do not develop NASH. The incidence of NAFLD is probably increasing in Western countries, strictly linked to lifestyle habits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease.

            Insulin resistance is associated with nonalcoholic fatty liver disease (NAFLD) and is a major factor in the pathogenesis of type 2 diabetes. The development of hepatic insulin resistance has been ascribed to multiple causes, including inflammation, endoplasmic reticulum (ER) stress, and accumulation of hepatocellular lipids in animal models of NAFLD. However, it is unknown whether these same cellular mechanisms link insulin resistance to hepatic steatosis in humans. To examine the cellular mechanisms that link hepatic steatosis to insulin resistance, we comprehensively assessed each of these pathways by using flash-frozen liver biopsies obtained from 37 obese, nondiabetic individuals and correlating key hepatic and plasma markers of inflammation, ER stress, and lipids with the homeostatic model assessment of insulin resistance index. We found that hepatic diacylglycerol (DAG) content in cytoplasmic lipid droplets was the best predictor of insulin resistance (R = 0.80, P < 0.001), and it was responsible for 64% of the variability in insulin sensitivity. Hepatic DAG content was also strongly correlated with activation of hepatic PKCε (R = 0.67, P < 0.001), which impairs insulin signaling. In contrast, there was no significant association between insulin resistance and other putative lipid metabolites or plasma or hepatic markers of inflammation. ER stress markers were only partly correlated with insulin resistance. In conclusion, these data show that hepatic DAG content in lipid droplets is the best predictor of insulin resistance in humans, and they support the hypothesis that NAFLD-associated hepatic insulin resistance is caused by an increase in hepatic DAG content, which results in activation of PKCε.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insulin resistance: a metabolic pathway to chronic liver disease.

              Insulin resistance (IR) is the pathophysiological hallmark of nonalcoholic fatty liver disease (NAFLD), one of the most common causes of chronic liver disease in Western countries. We review the definition of IR, the methods for the quantitative assessment of insulin action, the pathophysiology of IR, and the role of IR in the pathogenesis of chronic liver disease. Increased free fatty acid flux from adipose tissue to nonadipose organs, a result of abnormal fat metabolism, leads to hepatic triglyceride accumulation and contributes to impaired glucose metabolism and insulin sensitivity in muscle and in the liver. Several factors secreted or expressed in the adipocyte contribute to the onset of a proinflammatory state, which may be limited to the liver or more extensively expressed throughout the body. IR is the common characteristic of the metabolic syndrome and its related features. It is a systemic disease affecting the nervous system, muscles, pancreas, kidney, heart, and immune system, in addition to the liver. A complex interaction between genes and the environment favors or enhances IR and the phenotypic expression of NAFLD in individual patients. Advanced fibrotic liver disease is associated with multiple features of the metabolic syndrome, and the risk of progressive liver disease should not be underestimated in individuals with metabolic disorders. Finally, the ability of insulin-sensitizing, pharmacological agents to treat NAFLD by reducing IR in the liver (metformin) and in the periphery (thiazolidinediones) are discussed.
                Bookmark

                Author and article information

                Journal
                27760050
                5096902
                10.1172/JCI86013

                Comments

                Comment on this article