32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TRPV1 and TRPM8 in Treatment of Chronic Cough

      review-article
      ,
      Pharmaceuticals
      MDPI
      chronic cough, TRPV1, TRPM8, TRP antagonists, desensitization

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic cough is common in the population, and among some there is no evident medical explanation for the symptoms. Such a refractory or idiopathic cough is now often regarded as a neuropathic disease due to dysfunctional airway ion channels, though the knowledge in this field is still limited. Persistent coughing and a cough reflex easily triggered by irritating stimuli, often in combination with perceived dyspnea, are characteristics of this disease. The patients have impaired quality of life and often reduced work capacity, followed by social and economic consequences. Despite the large number of individuals suffering from such a persisting cough, there is an unmet clinical need for effective cough medicines. The cough treatment available today often has little or no effect. Adverse effects mostly follow centrally acting cough drugs comprised of morphine and codeine, which demands the physician’s awareness. The possibilities of modulating airway transient receptor potential (TRP) ion channels may indicate new ways to treat the persistent cough “without a reason”. The TRP ion channel vanilloid 1 (TRPV1) and the TRP melastin 8 (TRPM8) appear as two candidates in the search for cough therapy, both as single targets and in reciprocal interaction.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          TRP channels.

          The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRP channels as cellular sensors.

            TRP channels are the vanguard of our sensory systems, responding to temperature, touch, pain, osmolarity, pheromones, taste and other stimuli. But their role is much broader than classical sensory transduction. They are an ancient sensory apparatus for the cell, not just the multicellular organism, and they have been adapted to respond to all manner of stimuli, from both within and outside the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The menthol receptor TRPM8 is the principal detector of environmental cold.

              Sensory nerve fibres can detect changes in temperature over a remarkably wide range, a process that has been proposed to involve direct activation of thermosensitive excitatory transient receptor potential (TRP) ion channels. One such channel--TRP melastatin 8 (TRPM8) or cold and menthol receptor 1 (CMR1)--is activated by chemical cooling agents (such as menthol) or when ambient temperatures drop below approximately 26 degrees C, suggesting that it mediates the detection of cold thermal stimuli by primary afferent sensory neurons. However, some studies have questioned the contribution of TRPM8 to cold detection or proposed that other excitatory or inhibitory channels are more critical to this sensory modality in vivo. Here we show that cultured sensory neurons and intact sensory nerve fibres from TRPM8-deficient mice exhibit profoundly diminished responses to cold. These animals also show clear behavioural deficits in their ability to discriminate between cold and warm surfaces, or to respond to evaporative cooling. At the same time, TRPM8 mutant mice are not completely insensitive to cold as they avoid contact with surfaces below 10 degrees C, albeit with reduced efficiency. Thus, our findings demonstrate an essential and predominant role for TRPM8 in thermosensation over a wide range of cold temperatures, validating the hypothesis that TRP channels are the principal sensors of thermal stimuli in the peripheral nervous system.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                MDPI
                1424-8247
                28 July 2016
                September 2016
                : 9
                : 3
                : 45
                Affiliations
                Department of Allergology, Institution of Internal Medicine, The Sahlgrenska Academy at University of Gothenburg, 413 45 Gothenburg, Sweden; eva.millqvist@ 123456medfak.gu.se ; Tel.: +46-708-43-3819; Fax: +46-500-43-3819
                Article
                pharmaceuticals-09-00045
                10.3390/ph9030045
                5039498
                27483288
                385e0ec0-22c4-4286-9b10-4e5dd9287133
                © 2016 by the author; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 June 2016
                : 22 July 2016
                Categories
                Review

                chronic cough,trpv1,trpm8,trp antagonists,desensitization
                chronic cough, trpv1, trpm8, trp antagonists, desensitization

                Comments

                Comment on this article