13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Sulfur is an essential element required by all organisms. Therefore, salvage of wasteful, sulfur-containing cellular by-products can be critical. Methionine salvage pathways for organisms living in oxic environments are well established. However, if and by what mechanisms organisms living in anoxic environments can regenerate methionine from such by-products remain largely unknown. This work identifies a strictly anaerobic methionine salvage pathway, the key genes for which appear to be widespread among obligate and facultatively anaerobic bacteria. Strikingly, this pathway also results in the formation of ethylene gas, a key plant hormone and signaling molecule. Anoxic environments routinely accumulate biologically produced ethylene at significant levels, but the organisms and mechanisms responsible have been slow to emerge. This study provides one possible route.

          Abstract

          Numerous cellular processes involving S-adenosyl- l-methionine result in the formation of the toxic by-product, 5′-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the “universal” methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteria Rhodospirillum rubrum and Rhodopseudomonas palustris. In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents

          Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR) in plants resembles pathogen-induced systemic acquired resistance (SAR) under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris.

            Rhodopseudomonas palustris is among the most metabolically versatile bacteria known. It uses light, inorganic compounds, or organic compounds, for energy. It acquires carbon from many types of green plant-derived compounds or by carbon dioxide fixation, and it fixes nitrogen. Here we describe the genome sequence of R. palustris, which consists of a 5,459,213-base-pair (bp) circular chromosome with 4,836 predicted genes and a plasmid of 8,427 bp. The sequence reveals genes that confer a remarkably large number of options within a given type of metabolism, including three nitrogenases, five benzene ring cleavage pathways and four light harvesting 2 systems. R. palustris encodes 63 signal transduction histidine kinases and 79 response regulator receiver domains. Almost 15% of the genome is devoted to transport. This genome sequence is a starting point to use R. palustris as a model to explore how organisms integrate metabolic modules in response to environmental perturbations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

              Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases, the transcription activation function of Met4 is prevented by Met30p, which binds to the Met4 inhibitory region. In addition to the Cbf1p-Met4p-Met28p complex, transcriptional regulation involves two zinc finger-containing proteins, Met31p and Met32p. The AdoMet-mediated control of the sulfur amino acid pathway illustrates the molecular strategies used by eucaryotic cells to couple gene expression to metabolic changes.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc. Natl. Acad. Sci. U.S.A
                pnas
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                28 November 2017
                13 November 2017
                13 November 2017
                : 114
                : 48
                : E10455-E10464
                Affiliations
                [1] aDepartment of Microbiology, The Ohio State University , Columbus, OH 43210
                Author notes
                1To whom correspondence should be addressed. Email: tabita.1@ 123456osu.edu .

                Edited by Bob B. Buchanan, University of California, Berkeley, CA, and approved October 20, 2017 (received for review June 29, 2017)

                Author contributions: J.A.N. and F.R.T. designed research; J.A.N., A.R.M., J.A.W., and S.J.Y. performed research; J.A.N., A.R.M., and J.A.W. contributed new reagents/analytic tools; J.A.N., A.R.M., J.A.W., S.J.Y., and F.R.T. analyzed data; and J.A.N. and F.R.T. wrote the paper.

                Article
                201711625
                10.1073/pnas.1711625114
                5715764
                29133429
                3864d635-47da-42a3-9693-9111015912be
                Copyright © 2017 the Author(s). Published by PNAS.

                This is an open access article distributed under the PNAS license.

                History
                Page count
                Pages: 10
                Funding
                Funded by: HHS | NIH | National Institute of General Medical Sciences (NIGMS) 100000057
                Award ID: F32GM109547
                Funded by: HHS | NIH | National Institute of General Medical Sciences (NIGMS) 100000057
                Award ID: GM095742
                Categories
                PNAS Plus
                Biological Sciences
                Microbiology
                PNAS Plus

                methionine salvage,5′-methylthioadenosine,ethylene,rhodospirillum rubrum,rhodopseudomonas palustris

                Comments

                Comment on this article