8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.

          Related collections

          Author and article information

          Journal
          Toxicol. Sci.
          Toxicological sciences : an official journal of the Society of Toxicology
          Oxford University Press (OUP)
          1096-0929
          1096-0929
          Jun 2014
          : 139
          : 2
          Affiliations
          [1 ] Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.
          Article
          kfu037
          10.1093/toxsci/kfu037
          24595819
          3877ffe7-b3da-438b-9770-514acaba7386
          History

          Ginkgo biloba leaf extract,genotoxicity,kaempferol,oxidative stress,quercetin 3-β-d-glucoside,quercetin,DNA damage

          Comments

          Comment on this article