3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Homer1 promotes the conversion of A1 astrocytes to A2 astrocytes and improves the recovery of transgenic mice after intracerebral hemorrhage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Inflammation induced by intracerebral hemorrhage (ICH) is one of the main causes of the high mortality and poor prognosis of patients with ICH. A1 astrocytes are closely associated with neuroinflammation and neurotoxicity, whereas A2 astrocytes are neuroprotective. Homer scaffolding protein 1 (Homer1) plays a protective role in ischemic encephalopathy and neurodegenerative diseases. However, the role of Homer1 in ICH-induced inflammation and the effect of Homer1 on the phenotypic conversion of astrocytes remain unknown.

          Methods

          Femoral artery autologous blood from C57BL/6 mice was used to create an ICH model. We use the A1 phenotype marker C3 and A2 phenotype marker S100A10 to detect astrocyte conversion after ICH. Homer1 overexpression/knock-down mice were constructed by adeno-associated virus (AAV) infection to explore the role of Homer1 and its mechanism of action after ICH. Finally, Homer1 protein and selumetinib were injected into in situ hemorrhage sites in the brains of Homer1 flox/flox/Nestin-Cre +/− mice to study the efficacy of Homer1 in the treatment of ICH by using a mouse cytokine array to explore the potential mechanism.

          Results

          The expression of Homer1 peaked on the third day after ICH and colocalized with astrocytes. Homer1 promotes A1 phenotypic conversion in astrocytes in vivo and in vitro. Overexpression of Homer1 inhibits the activation of MAPK signaling, whereas Homer1 knock-down increases the expression of pathway-related proteins. The Homer1 protein and selumetinib, a non-ATP competitive MEK1/2 inhibitor, improved the outcome in ICH in Homer1 flox/flox/Nestin-Cre +/− mice. The efficacy of Homer1 in the treatment of ICH is associated with reduced expression of the inflammatory factor TNFSF10 and increased expression of the anti-inflammatory factors activin A, persephin, and TWEAK.

          Conclusions

          Homer1 plays an important role in inhibiting inflammation after ICH by suppressing the A1 phenotype conversion in astrocytes. In situ injection of Homer1 protein may be a novel and effective method for the treatment of inflammation after ICH.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Neurotoxic reactive astrocytes are induced by activated microglia

          A reactive astrocyte subtype termed A1 is induced after injury or disease of the central nervous system and subsequently promotes the death of neurons and oligodendrocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reactive Astrocytes: Production, Function, and Therapeutic Potential.

            Astrocytes constitute approximately 30% of the cells in the mammalian central nervous system (CNS). They are integral to brain and spinal-cord physiology and perform many functions important for normal neuronal development, synapse formation, and proper propagation of action potentials. We still know very little, however, about how these functions change in response to immune attack, chronic neurodegenerative disease, or acute trauma. In this review, we summarize recent studies that demonstrate that different initiating CNS injuries can elicit at least two types of "reactive" astrocytes with strikingly different properties, one type being helpful and the other harmful. We will also discuss new methods for purifying and investigating reactive-astrocyte functions and provide an overview of new markers for delineating these different states of reactive astrocytes. The discovery that astrocytes have different types of reactive states has important implications for the development of new therapies for CNS injury and diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic analysis of reactive astrogliosis.

              Reactive astrogliosis is characterized by a profound change in astrocyte phenotype in response to all CNS injuries and diseases. To better understand the reactive astrocyte state, we used Affymetrix GeneChip arrays to profile gene expression in populations of reactive astrocytes isolated at various time points after induction using two mouse injury models, ischemic stroke and neuroinflammation. We find reactive gliosis consists of a rapid, but quickly attenuated, induction of gene expression after insult and identify induced Lcn2 and Serpina3n as strong markers of reactive astrocytes. Strikingly, reactive astrocyte phenotype strongly depended on the type of inducing injury. Although there is a core set of genes that is upregulated in reactive astrocytes from both injury models, at least 50% of the altered gene expression is specific to a given injury type. Reactive astrocytes in ischemia exhibited a molecular phenotype that suggests that they may be beneficial or protective, whereas reactive astrocytes induced by LPS exhibited a phenotype that suggests that they may be detrimental. These findings demonstrate that, despite well established commonalities, astrocyte reactive gliosis is a highly heterogeneous state in which astrocyte activities are altered to respond to the specific injury. This raises the question of how many subtypes of reactive astrocytes exist. Our findings provide transcriptome databases for two subtypes of reactive astrocytes that will be highly useful in generating new and testable hypotheses of their function, as well as for providing new markers to detect different types of reactive astrocytes in human neurological diseases.
                Bookmark

                Author and article information

                Contributors
                kimi_wei@126.com
                feizhou@fmmu.edu.cn
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                14 March 2022
                14 March 2022
                2022
                : 19
                : 67
                Affiliations
                GRID grid.417295.c, ISNI 0000 0004 1799 374X, Department of Neurosurgery, Xijing Hospital, , Air Force Military Medical University, ; No. 127, Changle West Road, Xincheng District, Xi’an, 710032 Shaanxi China
                Article
                2428
                10.1186/s12974-022-02428-8
                8922810
                35287697
                387c9311-ba9e-4020-bbd6-ed0d79620040
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 28 January 2022
                : 3 March 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: No. 82101374
                Award ID: No. 81771239
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Neurosciences
                homer1,intracerebral hemorrhage,inflammation,astrocytes,phenotype
                Neurosciences
                homer1, intracerebral hemorrhage, inflammation, astrocytes, phenotype

                Comments

                Comment on this article