1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vitro skin culture media influence the viability and inflammatory response of primary macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The replacement of animal models for investigation of inflammation and wound healing has been advancing by means of in vitro skin equivalents with increasing levels of complexity. However, the current in vitro skin models still have a limited pre-clinical relevance due to their lack of immune cells. So far, few steps have been made towards the incorporation of immune cells into in vitro skin and the requirements for immunocompetent co-cultures remain unexplored. To establish suitable conditions for incorporating macrophages into skin models, we evaluated the effects of different media on primary keratinocytes, fibroblasts and macrophages. Skin maturation was affected by culture in macrophage medium, while macrophages showed reduced viability, altered cell morphology and decreased response to pro- and anti-inflammatory stimuli in skin differentiation media, both in 2D and 3D. The results indicate that immunocompetent skin models have specific, complex requirements for supporting an accurate detection of immune responses, which point at the identification of a suitable culture medium as a crucial pre-requisite for the development of physiologically relevant models.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage plasticity, polarization, and function in health and disease.

          Macrophages are heterogeneous and their phenotype and functions are regulated by the surrounding micro-environment. Macrophages commonly exist in two distinct subsets: 1) Classically activated or M1 macrophages, which are pro-inflammatory and polarized by lipopolysaccharide (LPS) either alone or in association with Th1 cytokines such as IFN-γ, GM-CSF, and produce pro-inflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-12, IL-23, and TNF-α; and 2) Alternatively activated or M2 macrophages, which are anti-inflammatory and immunoregulatory and polarized by Th2 cytokines such as IL-4 and IL-13 and produce anti-inflammatory cytokines such as IL-10 and TGF-β. M1 and M2 macrophages have different functions and transcriptional profiles. They have unique abilities by destroying pathogens or repair the inflammation-associated injury. It is known that M1/M2 macrophage balance polarization governs the fate of an organ in inflammation or injury. When the infection or inflammation is severe enough to affect an organ, macrophages first exhibit the M1 phenotype to release TNF-α, IL-1β, IL-12, and IL-23 against the stimulus. But, if M1 phase continues, it can cause tissue damage. Therefore, M2 macrophages secrete high amounts of IL-10 and TGF-β to suppress the inflammation, contribute to tissue repair, remodeling, vasculogenesis, and retain homeostasis. In this review, we first discuss the basic biology of macrophages including origin, differentiation and activation, tissue distribution, plasticity and polarization, migration, antigen presentation capacity, cytokine and chemokine production, metabolism, and involvement of microRNAs in macrophage polarization and function. Secondly, we discuss the protective and pathogenic role of the macrophage subsets in normal and pathological pregnancy, anti-microbial defense, anti-tumor immunity, metabolic disease and obesity, asthma and allergy, atherosclerosis, fibrosis, wound healing, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages in Tissue Repair, Regeneration, and Fibrosis.

            Inflammatory monocytes and tissue-resident macrophages are key regulators of tissue repair, regeneration, and fibrosis. After tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, such that uncontrolled production of inflammatory mediators and growth factors, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contribute to a state of persistent injury, and this could lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating phenotypes after injury, and we highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage Polarization.

              Macrophage polarization refers to how macrophages have been activated at a given point in space and time. Polarization is not fixed, as macrophages are sufficiently plastic to integrate multiple signals, such as those from microbes, damaged tissues, and the normal tissue environment. Three broad pathways control polarization: epigenetic and cell survival pathways that prolong or shorten macrophage development and viability, the tissue microenvironment, and extrinsic factors, such as microbial products and cytokines released in inflammation. A plethora of advances have provided a framework for rationally purifying, describing, and manipulating macrophage polarization. Here, I assess the current state of knowledge about macrophage polarization and enumerate the major questions about how activated macrophages regulate the physiology of normal and damaged tissues.
                Bookmark

                Author and article information

                Contributors
                markus.rottmar@empa.ch
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 March 2021
                29 March 2021
                2021
                : 11
                : 7070
                Affiliations
                [1 ]GRID grid.7354.5, ISNI 0000 0001 2331 3059, Laboratory for Biointerfaces, , Empa - Swiss Federal Laboratories for Materials Science and Technology, ; St. Gallen, Switzerland
                [2 ]GRID grid.411760.5, ISNI 0000 0001 1378 7891, Department Tissue Engineering & Regenerative Medicine, , University Hospital Würzburg, ; Würzburg, Germany
                [3 ]GRID grid.424644.4, ISNI 0000 0004 0495 360X, Translational Center for Regenerative Therapies, , Fraunhofer-Institute for Silicate Research ISC, ; Würzburg, Germany
                [4 ]GRID grid.8379.5, ISNI 0000 0001 1958 8658, Department of Bioinformatics, , University of Würzburg, ; Würzburg, Germany
                [5 ]GRID grid.5807.a, ISNI 0000 0001 1018 4307, Core Facility Tissue Engineering, , Otto-Von-Guericke-University, ; Magdeburg, Germany
                Article
                86486
                10.1038/s41598-021-86486-7
                8007571
                33782484
                38ddf819-dd93-4bc9-ae38-bcf6d7d10c1b
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 October 2020
                : 16 March 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: GRK 2157; project number 270563345
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                skin models,immunological models
                Uncategorized
                skin models, immunological models

                Comments

                Comment on this article