4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of edaravone on pregnant mice and their developing fetuses subjected to placental ischemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growing evidence indicates that reduced uterine perfusion pressure (RUPP) triggers the cascade of events leading to preeclampsia. Edaravone is a powerful free radical scavenger used for the treatment of ischemia/reperfusion diseases due to its anti-oxidative stress and anti-inflammatory properties. Here we investigate the effect of edaravone (3 mg/kg) on different maternal and fetal outcomes of RUPP-induced placental ischemia mice model. RUPP surgery was performed on gestation day (GD) 13 followed by edaravone injection from GD14 to GD18, sacrifice day. The results showed that edaravone injection significantly decreased the maternal blood pressure (113.2 ± 2.3 mmHg) compared with RUPP group (131.5 ± 1.9 mmHg). Edaravone increased fetal survival rate (75.4%) compared with RUPP group (54.4%), increased fetal length, weights, and feto-placental ratio (7.2 and 5.7 for RUPP and RUPP-Edaravone groups, respectively) compared with RUPP group. In addition, RUPP resulted in many fetal morphological abnormalities as well as severe delayed ossification, however edaravone decreased the morphological abnormalities and increased the ossification of the fetal endoskeleton. Edaravone improved the histopathological structure of the maternal kidney and heart as well as decreased the elevated blood urea and creatinine levels (31.5 ± 0.15 mg/dl (RUPP), 25.6 ± 0.1 mg/dl (RUPP+edaravone) for urea and 5.4 ± 0.1 mg/dl (RUPP), 3.5 ± 0.1 mg/dl (RUPP+edaravone) for creatinine) and decreased cleaved caspase-3 expression in the maternal kidney. In conclusion, this study demonstrated that our RUPP mice model recapitulated preeclampsia symptoms and edaravone injection ameliorated most of these abnormalities suggesting its effectiveness and potential application in preeclampsia treatment regimes.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12958-021-00707-2.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.

          Preeclampsia, a syndrome affecting 5% of pregnancies, causes substantial maternal and fetal morbidity and mortality. The pathophysiology of preeclampsia remains largely unknown. It has been hypothesized that placental ischemia is an early event, leading to placental production of a soluble factor or factors that cause maternal endothelial dysfunction, resulting in the clinical findings of hypertension, proteinuria, and edema. Here, we confirm that placental soluble fms-like tyrosine kinase 1 (sFlt1), an antagonist of VEGF and placental growth factor (PlGF), is upregulated in preeclampsia, leading to increased systemic levels of sFlt1 that fall after delivery. We demonstrate that increased circulating sFlt1 in patients with preeclampsia is associated with decreased circulating levels of free VEGF and PlGF, resulting in endothelial dysfunction in vitro that can be rescued by exogenous VEGF and PlGF. Additionally, VEGF and PlGF cause microvascular relaxation of rat renal arterioles in vitro that is blocked by sFlt1. Finally, administration of sFlt1 to pregnant rats induces hypertension, proteinuria, and glomerular endotheliosis, the classic lesion of preeclampsia. These observations suggest that excess circulating sFlt1 contributes to the pathogenesis of preeclampsia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lifetime risks of cardiovascular disease.

            The lifetime risks of cardiovascular disease have not been reported across the age spectrum in black adults and white adults. We conducted a meta-analysis at the individual level using data from 18 cohort studies involving a total of 257,384 black men and women and white men and women whose risk factors for cardiovascular disease were measured at the ages of 45, 55, 65, and 75 years. Blood pressure, cholesterol level, smoking status, and diabetes status were used to stratify participants according to risk factors into five mutually exclusive categories. The remaining lifetime risks of cardiovascular events were estimated for participants in each category at each age, with death free of cardiovascular disease treated as a competing event. We observed marked differences in the lifetime risks of cardiovascular disease across risk-factor strata. Among participants who were 55 years of age, those with an optimal risk-factor profile (total cholesterol level, <180 mg per deciliter [4.7 mmol per liter]; blood pressure, <120 mm Hg systolic and 80 mm Hg diastolic; nonsmoking status; and nondiabetic status) had substantially lower risks of death from cardiovascular disease through the age of 80 years than participants with two or more major risk factors (4.7% vs. 29.6% among men, 6.4% vs. 20.5% among women). Those with an optimal risk-factor profile also had lower lifetime risks of fatal coronary heart disease or nonfatal myocardial infarction (3.6% vs. 37.5% among men, <1% vs. 18.3% among women) and fatal or nonfatal stroke (2.3% vs. 8.3% among men, 5.3% vs. 10.7% among women). Similar trends within risk-factor strata were observed among blacks and whites and across diverse birth cohorts. Differences in risk-factor burden translate into marked differences in the lifetime risk of cardiovascular disease, and these differences are consistent across race and birth cohorts. (Funded by the National Heart, Lung, and Blood Institute.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Why is placentation abnormal in preeclampsia?

              The causes of preeclampsia remain one of the great medical mysteries of our time. This syndrome is thought to occur in 2 stages with abnormal placentation leading to a maternal inflammatory response. Specific regions of the placenta have distinct pathologic features. During normal pregnancy, cytotrophoblasts emigrate from the chorionic villi and invade the uterus, reaching the inner third of the myometrium. This unusual process is made even more exceptional by the fact that the placental cells are hemiallogeneic, coexpressing maternal and paternal genomes. Within the uterine wall, cytotrophoblasts deeply invade the spiral arteries. Cytotrophoblasts migrate up these vessels and replace, in a retrograde fashion, the maternal endothelial lining. They also insert themselves among the smooth muscle cells that form the tunica media. As a result, the spiral arteries attain the physiologic properties that are required to perfuse the placenta adequately. In comparison, invasion of the venous side of the uterine circulation is minimal, sufficient to enable venous return. In preeclampsia, cytotrophoblast invasion of the interstitial uterine compartment is frequently shallow, although not consistently so. In many locations, spiral artery invasion is incomplete. There are many fewer endovascular cytotrophoblasts, and some vessels retain portions of their endothelial lining with relatively intact muscular coats, although others are not modified. Work from our group showed that these defects mirror deficits in the differentiation program that enables cytotrophoblast invasion of the uterine wall. During normal pregnancy, invasion is accompanied by the down-regulation of epithelial-like molecules that are indicative of their ectodermal origin and up-regulation of numerous receptors and ligands that typically are expressed by endothelial or vascular smooth muscle cells. For example, the expression of epithelial-cadherin (the cell-cell adhesion molecule that many ectodermal derivatives use to adhere to one another) becomes nearly undetectable, replaced by vascular-endothelial cadherin, which serves the same purpose in blood vessels. Invading cytotrophoblasts also modulate vascular endothelial growth factor ligands and receptors, at some point in the differentiation process expressing every (mammalian) family member. Molecules in this family play crucial roles in vascular and trophoblast biology, including the prevention of apoptosis. In preeclampsia, this process of vascular mimicry is incomplete, which we theorize hinders the cells interactions with spiral arterioles. What causes these aberrations? Given what is known from animal models and human risk factors, reduced placental perfusion and/or certain disease states (metabolic, immune and cardiovascular) lie upstream. Recent evidence suggests the surprising conclusion that isolation and culture of cytotrophoblasts from the placentas of pregnancies complicated by preeclampsia enables normalization of their gene expression. The affected molecules include SEMA3B, which down-regulates vascular endothelial growth factor signaling through the PI3K/AKT and GSK3 pathways. Thus, some aspects of the aberrant differentiation of cytotrophoblasts within the uterine wall that is observed in situ may be reversible. The next challenge is asking what the instigating causes are. There is added urgency to finding the answers, because these pathways could be valuable therapeutic targets for reversing abnormal placental function in patients.
                Bookmark

                Author and article information

                Contributors
                marwanabil86@yahoo.com
                Journal
                Reprod Biol Endocrinol
                Reprod Biol Endocrinol
                Reproductive Biology and Endocrinology : RB&E
                BioMed Central (London )
                1477-7827
                6 February 2021
                6 February 2021
                2021
                : 19
                : 19
                Affiliations
                [1 ]GRID grid.261356.5, ISNI 0000 0001 1302 4472, Department of Neurology, , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, ; 2-5-1 Shikata-cho, Okayama, 700-8558 Japan
                [2 ]GRID grid.411775.1, ISNI 0000 0004 0621 4712, Vertebrates Comparative Anatomy and Embryology, Zoology Department, Faculty of Science, , Menoufia University, ; Shebin El-Koom, Egypt
                Author information
                http://orcid.org/0000-0003-1772-3996
                Article
                707
                10.1186/s12958-021-00707-2
                7866881
                3976273f-2b18-4b5b-a7f4-620a76e81ef5
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 14 November 2020
                : 1 February 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Human biology
                preeclampsia,rupp,edaravone,placental ischemia,endoskeleton,fetal growth restriction
                Human biology
                preeclampsia, rupp, edaravone, placental ischemia, endoskeleton, fetal growth restriction

                Comments

                Comment on this article