Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transient influx of Ca(2+) constitutes an early event in the signaling cascades that trigger plant defense responses. However, the downstream components of defense-associated Ca(2+) signaling are largely unknown. Because Ca(2+) signals are mediated by Ca(2+)-binding proteins, including calmodulin (CaM), identification and characterization of CaM-binding proteins elicited by pathogens should provide insights into the mechanism by which Ca(2+) regulates defense responses. In this study, we isolated a gene encoding rice Mlo (Oryza sativa Mlo; OsMlo) using a protein-protein interaction-based screening of a cDNA expression library constructed from pathogen-elicited rice suspension cells. OsMlo has a molecular mass of 62 kDa and shares 65% sequence identity and scaffold topology with barley Mlo, a heptahelical transmembrane protein known to function as a negative regulator of broad spectrum disease resistance and leaf cell death. By using gel overlay assays, we showed that OsMlo produced in Escherichia coli binds to soybean CaM isoform-1 (SCaM-1) in a Ca(2+)-dependent manner. We located a 20-amino acid CaM-binding domain (CaMBD) in the OsMlo C-terminal cytoplasmic tail that is necessary and sufficient for Ca(2+)-dependent CaM complex formation. Specific binding of the conserved CaMBD to CaM was corroborated by site-directed mutagenesis, a gel mobility shift assay, and a competition assay with a Ca(2+)/CaM-dependent enzyme. Expression of OsMlo was strongly induced by a fungal pathogen and by plant defense signaling molecules. We propose that binding of Ca(2+)-loaded CaM to the C-terminal tail may be a common feature of Mlo proteins.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          May 31 2002
          : 277
          : 22
          Affiliations
          [1 ] Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea.
          Article
          S0021-9258(20)84983-7
          10.1074/jbc.M108478200
          11904292
          39833f8c-3fd0-4e43-af1f-681b723ef1ff
          History

          Comments

          Comment on this article