8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetics, Tissue Distribution, Excretion and Plasma Protein Binding Studies of Wogonin in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wogonin is a natural anticancer candidate. The purpose of this study was to explore the pharmacokinetic profiles, tissue distribution, excretion and plasma protein binding of wogonin in Sprague—Dawley rats. A rapid, sensitive, and specific LC-MS/MS method has been developed for the determination of wogonin in different rat biological samples. After i.v. dosing of wogonin at different levels (10, 20 and 40 mg/kg) the elimination half-life was approximately 14 min, the AUC 0-∞ increased in a dose disproportional manner from 112.13 mg/L·min for 10 mg/kg to 758.19 mg/L·min for 40 mg/kg, indicating a non linear pharmacokinetic profile. After i.g. dosing at 100 mg/kg, plasma levels of wogonin peaked at 28 min with a C max value of 300 ng/mL and a very low oral bioavailability (1.10%). Following i.v. single dose (20 mg/kg), wogonin was detected in all examined tissues (including testis) with the highest levels in kidney and liver. Approximately 21% of the administered dose was excreted as unchanged drug (mainly via non-biliairy fecal route (16.33%). Equilibrium dialysis was used to evaluate plasma protein binding of wogonin at three concentrations (0.1, 0.5 and 2 µg/mL). Results indicated a very high protein binding degree (over 90%), reducing substantially the free fraction of the compound.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca(2+)-dependent endonuclease.

            Seven structurally related flavonoids including luteolin, nobiletin, wogonin, baicalein, apigenin, myricetin and fisetin were used to study their biological activities on the human leukemia cell line, HL-60. On MTT assay, wogonin, baicalein, apigenin, myricetin and fisetin showed obvious cytotoxic effects on HL-60 cells, with wogonin and fisetin being the most-potent apoptotic inducers among them. The cytotoxic effects of wogonin and fisetin were accompanied by the dose- and time-dependent appearance of characteristics of apoptosis including DNA fragmentation, apoptotic bodies and the sub-G1 ratio. Treatment with an apoptosis-inducing concentration of wogonin or fisetin causes rapid and transient induction of caspase 3/CPP32 activity, but not caspase 1 activity. Further, cleavage of poly(ADP-ribose) polymerase (PARP) and decrease of pro-caspase 3 protein were detected in wogonin- and fisetin-treated HL-60 cells. An increase in the pro-apoptotic protein, bax, and a decrease in the anti-apoptotic protein, Mcl-1, were detected in fisetin- and wogonin-treated HL-60 cells. However, Bcl-2, Bcl-XL, and Bad all remained unchanged in wogonin- and fisetin-treated HL-60 cells. In vitro chromatin digestion revealed that endonuclease activity was profoundly enhanced in wogonin- and fisetin-treated HL-60 cells, and the addition of ethylenediaminetetraacetic acid (EDTA) or ethyleneglycoltetraacetic acid (EGTA) into the reaction blocked endonuclease activation and at an optimum pH of 7.5. The caspase 3 inhibitor, Ac-DEVD-CHO, but not the caspase 1 inhibitor, Ac-YVAD-CHO, attenuated wogonin- and fisetin-induced DNA ladders, PARP cleavage, and endonuclease activation. Pretreatment of HL-60 cells with N-acetyl-cysteine or catalase efficiently inhibited H(2)O(2) (200 microM)-induced apoptosis, but showed no inhibitory effect on wogonin- and fisetin-induced DNA ladders, caspase 3 activation, or bax protein induction. Decrease in endogenous ROS production was detected in wogonin- and fisetin-treated HL-60 cells by DCHF-DA assay. In conclusion, our experiments indicate that a decrease in intracellular peroxide level was involved in wogonin- and fisetin-induced apoptosis; activation of caspase 3 and endonuclease, induction of bax protein and suppression of Mcl-1 protein were detected in the process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Target-based selection of flavonoids for neurodegenerative disorders.

              Habitual consumption of dietary flavonoids known to improve mitochondrial bioenergetics and inhibit various secondary sources of reactive oxygen species (ROS) reduces the risk for neurodegenerative disorders such as Parkinson's disease (PD), stroke, and Alzheimer's disease (AD). Combining specific dietary flavonoids selected on the basis of oral bioavailability, brain penetration, and the inhibition of multiple processes responsible for excessive ROS production may be a viable approach for the prevention and treatment of neurodegenerative disorders. Inclusion of flavonoids that raise cAMP levels in the brain may be of additional benefit by reducing the production of proinflammatory mediators and stimulating the transcriptional machinery necessary for mitochondrial biosynthesis. Preclinical models suggest that flavonoids reduce hearing loss resulting from treatment with the chemotherapeutic drug cisplatin by opposing the excessive production of ROS and proinflammatory mediators implicated in PD, stroke, and AD. Flavonoid combinations optimized for efficacy in models of cisplatin-induced hearing loss (CIHL) may therefore have therapeutic utility for neurodegenerative disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                29 April 2014
                May 2014
                : 19
                : 5
                : 5538-5549
                Affiliations
                Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 24# Tongjiaxiang, Nanjing 210009, Jiangsu, China
                Author notes
                [†]

                The authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: chenxj-lab@ 123456hotmail.com ; Tel./Fax: +86-25-8618-5379.
                Article
                molecules-19-05538
                10.3390/molecules19055538
                6270787
                24786691
                39935742-fcd6-47b1-be74-6070e5c28887
                © 2014 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 31 March 2014
                : 24 April 2014
                : 25 April 2014
                Categories
                Article

                flavonoids,excretion,lc-ms/ms,scutellaria baicalensis georgi,wogonin

                Comments

                Comment on this article