21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background 2019-Novel coronavirus (2019-nCoV) outbreaks create challenges for hospital laboratories because thousands of samples must be evaluated each day. Sample types, interpretation methods, and corresponding laboratory standards must be established. The possibility of other infections should be assessed to provide a basis for clinical classification, isolation, and treatment. Accordingly, in the present study, we evaluated the testing methods for 2019-nCoV and co-infections. Methods We used a fluorescence-based quantitative PCR kit urgently distributed by the Chinese CDC to detect 8274 close contacts in the Wuhan region against two loci on the 2019-nCoV genome. We also analyzed 613 patients with fever who underwent multiple tests for 13 respiratory pathogens; 316 subjects were also tested for 2019-nCoV. Findings Among the 8274 subjects, 2745 (33.2%) had 2019-nCoV infection; 5277 (63.8%) subjects showed negative results in the 2019-nCoV nucleic acid test (non-019-nCoV); and 252 cases (3.0%) because only one target was positive, the diagnosis was not definitive. Sixteen patients who originally had only one positive target were re-examined a few days later; 14 patients (87.5%) were finally defined as 2019-nCoV-positive, and 2 (12.5%) were finally defined as negative. The positive rates of nCoV-NP and nCovORF1ab were 34.7% and 34.7%, respectively. nCoV-NP-positive only and nCovORF1ab-positive cases accounted for 1.5% and 1.5%, respectively. In the 316 patients with multiple respiratory pathogens, 104 were positive for 2019-nCov and 6/104 had co-infection with coronavirus (3/104), influenza A virus (2/104), rhinovirus (2/104), and influenza A H3N2 (1/104); the remaining 212 patients had influenza A virus (11/202), influenza A H3N2 (11/202), rhinovirus (10/202), respiratory syncytial virus (7/202), influenza B virus (6/202), metapneumovirus (4/202), and coronavirus (2/202). Interpretation: Clinical testing methods for 2019-nCoV require improvement. Importantly, 5.8% of 2019-nCoV infected and 18.4% of non-2019-nCoV-infected patients had other pathogen infections. It is important to treat combined infections and perform rapid screening to avoid cross-contamination of patients. A test that quickly and simultaneously screens as many pathogens as possible is needed.

          Related collections

          Author and article information

          Journal
          medRxiv
          February 13 2020
          Article
          10.1101/2020.02.12.20022327
          39b98c2b-4800-437b-8353-80e17eb81c28
          © 2020
          History

          Comments

          Comment on this article