12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells.

          Human diploid epidermis epidermal cells have been successfully grown in serial culture. To initiate colony formation, they require the presence of fibroblasts, but proliferation of fibroblasts must be controlled so that the epidermal cell population is not overgrown. Both conditions can be achieved by the use of lethally irradiated 3T3 cells at the correct density. When trypsinized human skin cells are plated together with the 3T3 cells, the growth of the human fibroblasts is largely suppressed, but epidermal cells grow from single cells into colonies. Each colony consists of keratinocytes ultimately forming a stratified squamous epithelium in which the dividing cells are confined to the lowest layer(s). Hydrocortisone is added to the medium, since in secondary and subsequent subcultures it makes the colony morphology more oderly and distinctive, and maintains proliferation at a slightly greater rate. Under these culture conditions, it is possible to isolate keratinocyte clones free of viable fibroblasts. Like human diploid fibroblasts, human diploid keratinocytes appear to have a finite culture lifetime. For 7 strains studied, the culture lifetime ranged from 20-50 cell generations. The plating efficiency of the epidermal cells taken directly from skin was usually 0.1-1.0%. On subsequent transfer of the cultures initiated from newborns, the plating efficiency rose to 10% or higher, but was most often in the range of 1-5% and dropped sharply toward the end of their culture life. The plating efficiency and culture lifetime were lower for keratinocytes of older persons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p63 identifies keratinocyte stem cells.

            The proliferative compartment of stratified squamous epithelia consists of stem and transient amplifying (TA) keratinocytes. Some polypeptides are more abundant in putative epidermal stem cells than in TA cells, but no polypeptide confined to the stem cells has yet been identified. Here we show that the p63 transcription factor, a p53 homologue essential for regenerative proliferation in epithelial development, distinguishes human keratinocyte stem cells from their TA progeny. Within the cornea, nuclear p63 is expressed by the basal cells of the limbal epithelium, but not by TA cells covering the corneal surface. Human keratinocyte stem and TA cells when isolated in culture give rise to holoclones and paraclones, respectively. We show by clonal analysis that p63 is abundantly expressed by epidermal and limbal holoclones, but is undetectable in paraclones. TA keratinocytes, immediately after their withdrawal from the stem cell compartment (meroclones), have greatly reduced p63, even though they possess very appreciable proliferative capacity. Clonal evolution (i.e., generation of TA cells from precursor stem cells) is promoted by the sigma isoform of the 14-3-3 family of proteins. Keratinocytes whose 14-3-3final sigma has been down-regulated remain in the stem cell compartment and maintain p63 during serial cultivation. The identification of p63 as a keratinocyte stem cell marker will be of practical importance for the clinical application of epithelial cultures in cell therapy as well as for studies on epithelial tumorigenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells.

              Despite the obvious importance of epithelial stem cells in tissue homeostasis and tumorigenesis, little is known about their specific location or biological characteristics. Using 3H-thymidine labeling, we have identified a subpopulation of corneal epithelial basal cells, located in the peripheral cornea in a region called limbus, that are normally slow cycling, but can be stimulated to proliferate in response to wounding and to a tumor promotor, TPA. No such cells can be detected in the central corneal epithelium, suggesting that corneal epithelial stem cells are located in the limbus. A comparison of various types of epithelial stem cells revealed a common set of features, including their preferred location, pigment protection, and growth properties, which presumably play a crucial role in epithelial stem cell function.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                J Funct Biomater
                J Funct Biomater
                jfb
                Journal of Functional Biomaterials
                MDPI
                2079-4983
                01 March 2016
                March 2016
                : 7
                : 1
                : 5
                Affiliations
                [1 ]Department of Medical Biochemistry, Oslo University Hospital, Oslo 0407, Norway; utheim2@ 123456gmail.com
                [2 ]Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo 0372, Norway
                [3 ]Department of Ophthalmology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen 3004, Norway
                [4 ]Department of Ophthalmology, Oslo University Hospital, Oslo 0407, Norway; outheim@ 123456gmail.com
                [5 ]Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø 9037, Norway; qalb-e-saleem.k.ahmed@ 123456uit.no
                Author notes
                [* ]Correspondence: amer.sehic@ 123456odont.uio.no ; Tel.: +47-22840352
                Article
                jfb-07-00005
                10.3390/jfb7010005
                4810064
                26938569
                39c756c9-e14c-4260-a80b-e4bf4e522360
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 December 2015
                : 22 February 2016
                Categories
                Review

                cornea,limbal stem cell deficiency,ocular surface disease,oral mucosal epithelial cell sheet,substrates

                Comments

                Comment on this article