10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microindentation of the young porcine ocular lens.

      Journal of biomechanical engineering
      Animals, Biomechanical Phenomena, Elastic Modulus, Elasticity, Lens Nucleus, Crystalline, physiology, Lens, Crystalline, Models, Biological, Optics and Photonics, instrumentation, methods, Regression Analysis, Shear Strength, Stress, Mechanical, Swine, Viscosity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Debate regarding the mechanisms of how the eye changes focus (accommodation) and why this ability is lost with age (presbyopia) has recently been rejoined due to the advent of surgical procedures for the correction of presbyopia. Due to inherent confounding factors in both in vivo and in vitro measurement techniques, mechanical modeling of the behavior of the ocular lens in accommodation has been attempted to settle the debate. However, a paucity of reliable mechanical property measurements has proven problematic in the development of a successful mechanical model of accommodation. Instrumented microindentation was utilized to directly measure the local elastic modulus and dynamic response at various locations in the lens. The young porcine lens exhibits a large modulus gradient with the highest modulus appearing at the center of the nucleus and exponentially decreasing with distance. The loss tangent was significantly higher in the decapsulated lens and the force waveform amplitude decreased significantly upon removal of the lens capsule. The findings indicate that localized measurements of the lens' mechanical properties are necessary to achieve accurate quantitative parameters suitable for mechanical modeling efforts. The results also indicate that the lens behaves as a crosslinked gel rather than as a collection of individual arched fiber cells.

          Related collections

          Author and article information

          Comments

          Comment on this article