15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ultrafast Fiber Laser Technology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Optical frequency comb generation from a monolithic microresonator

          Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultra-violet and can link an unknown optical frequency to a radio or microwave frequency reference. Since their inception frequency combs have triggered major advances in optical frequency metrology and precision measurements and in applications such as broadband laser-based gas sensing8 and molecular fingerprinting. Early work generated frequency combs by intra-cavity phase modulation while to date frequency combs are generated utilizing the comb-like mode structure of mode-locked lasers, whose repetition rate and carrier envelope phase can be stabilized. Here, we report an entirely novel approach in which equally spaced frequency markers are generated from a continuous wave (CW) pump laser of a known frequency interacting with the modes of a monolithic high-Q microresonator13 via the Kerr nonlinearity. The intrinsically broadband nature of parametric gain enables the generation of discrete comb modes over a 500 nm wide span (ca. 70 THz) around 1550 nm without relying on any external spectral broadening. Optical-heterodyne-based measurements reveal that cascaded parametric interactions give rise to an optical frequency comb, overcoming passive cavity dispersion. The uniformity of the mode spacing has been verified to within a relative experimental precision of 7.3*10(-18).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endlessly single-mode photonic crystal fiber.

            We made an all-silica optical fiber by embedding a central core in a two-dimensional photonic crystal with a micrometer-spaced hexagonal array of air holes. An effective-index model confirms that such a fiber can be single mode for any wavelength. Its useful single-mode range within the transparency window of silica, although wide, is ultimately bounded by a bend-loss edge at short wavelengths as well as at long wavelengths.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm.

              We demonstrate experimentally for what is to our knowledge the first time that air-silica microstructure optical fibers can exhibit anomalous dispersion at visible wavelengths. We exploit this feature to generate an optical continuum 550 THz in width, extending from the violet to the infrared, by propagating pulses of 100-fs duration and kilowatt peak powers through a microstructure fiber near the zero-dispersion wavelength.
                Bookmark

                Author and article information

                Journal
                IEEE Journal of Selected Topics in Quantum Electronics
                IEEE J. Select. Topics Quantum Electron.
                Institute of Electrical and Electronics Engineers (IEEE)
                1077-260X
                January 2009
                January 2009
                : 15
                : 1
                : 191-206
                Article
                10.1109/JSTQE.2008.2010246
                39eb604e-50ca-4016-b5bd-3b492e95245d
                © 2009
                History

                Comments

                Comment on this article