7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources

      , , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This research investigated the current methods of characterization of ions and metals in particulate matter pollutants from different emission sources. The study was conducted through the Proknow-C methodology, in which a portfolio that includes scientific and review articles was selected. The document addresses different methodologies currently used to quantify diverse ions and metals (IIMM) found in particulate matter (PM), specifically focused on PM10 and PM2.5. The investigation was made going through the types of filters used to capture the pollutant, the equipment and the corresponding characterization techniques. Results show the Proknow-C method is a reliable way to analyze PM pollution research, revealing the state of art for metals and ions types, characterization technologies, current situations and trends. Sulfate, nitrate, and ammonium ions are found in concentrations between 70 and 80% of the PM. Among the main metals found are chromium, nickel, lead, cadmium, iron, manganese, coper, and zinc. The main detection method found in the studied research was inductively coupled plasma mass spectrometry. It was also found that geographic information systems are a good tool for integrating special data with PM and air pollution, which could accelerate the diagnosis and thus the actions to give solution to the problem.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosols, climate, and the hydrological cycle.

          Human activities are releasing tiny particles (aerosols) into the atmosphere. These human-made aerosols enhance scattering and absorption of solar radiation. They also produce brighter clouds that are less efficient at releasing precipitation. These in turn lead to large reductions in the amount of solar irradiance reaching Earth's surface, a corresponding increase in solar heating of the atmosphere, changes in the atmospheric temperature structure, suppression of rainfall, and less efficient removal of pollutants. These aerosol effects can lead to a weaker hydrological cycle, which connects directly to availability and quality of fresh water, a major environmental issue of the 21st century.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High secondary aerosol contribution to particulate pollution during haze events in China.

            Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistent sulfate formation from London Fog to Chinese haze.

              Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                March 2023
                March 01 2023
                : 15
                : 5
                : 4402
                Article
                10.3390/su15054402
                3a23735d-c7f3-403d-8bf0-ee54f997ce27
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article