27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gender differences in cardiovascular disease

      , , ,
      Medicine in Novel Technology and Devices
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies

          Summary Background The main associations of body-mass index (BMI) with overall and cause-specific mortality can best be assessed by long-term prospective follow-up of large numbers of people. The Prospective Studies Collaboration aimed to investigate these associations by sharing data from many studies. Methods Collaborative analyses were undertaken of baseline BMI versus mortality in 57 prospective studies with 894 576 participants, mostly in western Europe and North America (61% [n=541 452] male, mean recruitment age 46 [SD 11] years, median recruitment year 1979 [IQR 1975–85], mean BMI 25 [SD 4] kg/m2). The analyses were adjusted for age, sex, smoking status, and study. To limit reverse causality, the first 5 years of follow-up were excluded, leaving 66 552 deaths of known cause during a mean of 8 (SD 6) further years of follow-up (mean age at death 67 [SD 10] years): 30 416 vascular; 2070 diabetic, renal or hepatic; 22 592 neoplastic; 3770 respiratory; 7704 other. Findings In both sexes, mortality was lowest at about 22·5–25 kg/m2. Above this range, positive associations were recorded for several specific causes and inverse associations for none, the absolute excess risks for higher BMI and smoking were roughly additive, and each 5 kg/m2 higher BMI was on average associated with about 30% higher overall mortality (hazard ratio per 5 kg/m2 [HR] 1·29 [95% CI 1·27–1·32]): 40% for vascular mortality (HR 1·41 [1·37–1·45]); 60–120% for diabetic, renal, and hepatic mortality (HRs 2·16 [1·89–2·46], 1·59 [1·27–1·99], and 1·82 [1·59–2·09], respectively); 10% for neoplastic mortality (HR 1·10 [1·06–1·15]); and 20% for respiratory and for all other mortality (HRs 1·20 [1·07–1·34] and 1·20 [1·16–1·25], respectively). Below the range 22·5–25 kg/m2, BMI was associated inversely with overall mortality, mainly because of strong inverse associations with respiratory disease and lung cancer. These inverse associations were much stronger for smokers than for non-smokers, despite cigarette consumption per smoker varying little with BMI. Interpretation Although other anthropometric measures (eg, waist circumference, waist-to-hip ratio) could well add extra information to BMI, and BMI to them, BMI is in itself a strong predictor of overall mortality both above and below the apparent optimum of about 22·5–25 kg/m2. The progressive excess mortality above this range is due mainly to vascular disease and is probably largely causal. At 30–35 kg/m2, median survival is reduced by 2–4 years; at 40–45 kg/m2, it is reduced by 8–10 years (which is comparable with the effects of smoking). The definite excess mortality below 22·5 kg/m2 is due mainly to smoking-related diseases, and is not fully explained. Funding UK Medical Research Council, British Heart Foundation, Cancer Research UK, EU BIOMED programme, US National Institute on Aging, and Clinical Trial Service Unit (Oxford, UK).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.

            Increased levels of the inflammatory biomarker high-sensitivity C-reactive protein predict cardiovascular events. Since statins lower levels of high-sensitivity C-reactive protein as well as cholesterol, we hypothesized that people with elevated high-sensitivity C-reactive protein levels but without hyperlipidemia might benefit from statin treatment. We randomly assigned 17,802 apparently healthy men and women with low-density lipoprotein (LDL) cholesterol levels of less than 130 mg per deciliter (3.4 mmol per liter) and high-sensitivity C-reactive protein levels of 2.0 mg per liter or higher to rosuvastatin, 20 mg daily, or placebo and followed them for the occurrence of the combined primary end point of myocardial infarction, stroke, arterial revascularization, hospitalization for unstable angina, or death from cardiovascular causes. The trial was stopped after a median follow-up of 1.9 years (maximum, 5.0). Rosuvastatin reduced LDL cholesterol levels by 50% and high-sensitivity C-reactive protein levels by 37%. The rates of the primary end point were 0.77 and 1.36 per 100 person-years of follow-up in the rosuvastatin and placebo groups, respectively (hazard ratio for rosuvastatin, 0.56; 95% confidence interval [CI], 0.46 to 0.69; P<0.00001), with corresponding rates of 0.17 and 0.37 for myocardial infarction (hazard ratio, 0.46; 95% CI, 0.30 to 0.70; P=0.0002), 0.18 and 0.34 for stroke (hazard ratio, 0.52; 95% CI, 0.34 to 0.79; P=0.002), 0.41 and 0.77 for revascularization or unstable angina (hazard ratio, 0.53; 95% CI, 0.40 to 0.70; P<0.00001), 0.45 and 0.85 for the combined end point of myocardial infarction, stroke, or death from cardiovascular causes (hazard ratio, 0.53; 95% CI, 0.40 to 0.69; P<0.00001), and 1.00 and 1.25 for death from any cause (hazard ratio, 0.80; 95% CI, 0.67 to 0.97; P=0.02). Consistent effects were observed in all subgroups evaluated. The rosuvastatin group did not have a significant increase in myopathy or cancer but did have a higher incidence of physician-reported diabetes. In this trial of apparently healthy persons without hyperlipidemia but with elevated high-sensitivity C-reactive protein levels, rosuvastatin significantly reduced the incidence of major cardiovascular events. (ClinicalTrials.gov number, NCT00239681.) 2008 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis.

              Women with gestational diabetes are at increased risk of developing type 2 diabetes, but the risk and time of onset have not been fully quantified. We therefore did a comprehensive systematic review and meta-analysis to assess the strength of association between these conditions and the effect of factors that might modify the risk. We identified cohort studies in which women who had developed type 2 diabetes after gestational diabetes were followed up between Jan 1, 1960, and Jan 31, 2009, from Embase and Medline. 205 relevant reports were hand searched. We selected 20 studies that included 675 455 women and 10 859 type 2 diabetic events. We calculated and pooled unadjusted relative risks (RRs) with 95% CIs for each study using a random-effects model. Subgroups analysed were the number of cases of type 2 diabetes, ethnic origin, duration of follow-up, maternal age, body-mass index, and diagnostic criteria. Women with gestational diabetes had an increased risk of developing type 2 diabetes compared with those who had a normoglycaemic pregnancy (RR 7.43, 95% CI 4.79-11.51). Although the largest study (659 164 women; 9502 cases of type 2 diabetes) had the largest RR (12.6, 95% CI 12.15-13.19), RRs were generally consistent among the subgroups assessed. Increased awareness of the magnitude and timing of the risk of type 2 diabetes after gestational diabetes among patients and clinicians could provide an opportunity to test and use dietary, lifestyle, and pharmacological interventions that might prevent or delay the onset of type 2 diabetes in affected women. None.
                Bookmark

                Author and article information

                Contributors
                Journal
                Medicine in Novel Technology and Devices
                Medicine in Novel Technology and Devices
                Elsevier BV
                25900935
                December 2019
                December 2019
                : 4
                : 100025
                Article
                10.1016/j.medntd.2019.100025
                3a306a06-c6f5-4413-9e05-de181ba561f8
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article