8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resonance Recombination Model and Quark Distribution Functions in the Quark-Gluon Plasma

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigate the consequences of space-momentum correlations in quark phase-space distributions for coalescence processes at the hadronization transition. Thus far it has been proved difficult to reconcile such correlations with the empirically observed constituent quark number scaling (CQNS) at the Relativistic Heavy-Ion Collider (RHIC). To address this problem we combine our earlier developed quark recombination model with quark phase-space distributions computed from relativistic Langevin simulations in an expanding Quark-Gluon Plasma (QGP). Hadronization is based on resonance formation within a Boltzmann equation which recovers thermal equilibrium and obeys energy conservation in the quark-coalescence process, while the fireball background is adjusted to hydrodynamic simulations of semi-central Au-Au collisions at RHIC. To facilitate the applicability of the Langevin process, we focus on strange and charm quarks. Their interactions in the QGP are modeled using leading-order perturbative QCD augmented by effective Lagrangians with resonances which smoothly merge into hadronic states formed at T_c. The interaction strength is adjusted to reproduce the empirical saturation value for the quark-elliptic flow, v_{2,q}^{sat}~7-8%. The resulting phi and J/\psi elliptic flow recover CQNS over a large range in transverse momentum (p_T) within a few percent. As a function of transverse kinetic energy, both the quark spectra from the Langevin simulations and the meson spectra generated via resonance recombination recover CQNS from zero to at least 3 GeV.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Multi-Phase Transport Model for Relativistic Heavy Ion Collisions

          We describe in detail how the different components of a multi-phase transport (AMPT) model, that uses the Heavy Ion Jet Interaction Generator (HIJING) for generating the initial conditions, Zhang's Parton Cascade (ZPC) for modeling partonic scatterings, the Lund string fragmentation model or a quark coalescence model for hadronization, and A Relativistic Transport (ART) model for treating hadronic scatterings, are improved and combined to give a coherent description of the dynamics of relativistic heavy ion collisions. We also explain the way parameters in the model are determined, and discuss the sensitivity of predicted results to physical input in the model. Comparisons of these results to experimental data, mainly from heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC), are then made in order to extract information on the properties of the hot dense matter formed in these collisions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Elliptic flow at large transverse momenta from quark coalescence

            , (2003)
            We show that hadronization via quark coalescence enhances hadron elliptic flow at large pT relative to that of partons at the same transverse momentum. Therefore, compared to earlier results based on covariant parton transport theory, more moderate initial parton densities dN/d\eta(b=0) ~ 1500-3000 can explain the differential elliptic flow v_2(pT) data for Au+Au reactions at s^1/2=130 and 200 AGeV from RHIC. In addition, v2(pT) could saturate at about 50% higher values for baryons than for mesons. If strange quarks have weaker flow than light quarks, hadron v_2 at high pT decreases with relative strangeness content.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nonperturbative Heavy-Quark Diffusion in the Quark-Gluon Plasma

              We evaluate heavy-quark (HQ) transport properties in a Quark-Gluon Plasma (QGP) employing interaction potentials extracted from thermal lattice QCD. Within a Brueckner many-body scheme we calculate in-medium T-matrices for charm- and bottom-quark scattering off light quarks in the QGP. The interactions are dominated by attractive meson and diquark channels which support bound and resonance states up to temperatures of ~1.5 T_c. We apply pertinent drag and diffusion coefficients (supplemented by perturbative scattering off gluons) in Langevin simulations in an expanding fireball to compute HQ spectra and elliptic flow in \sqrt{s_{NN}}=200 GeV Au-Au collisions. We find good agreement with semileptonic electron-decay spectra which supports our nonperturbative computation of the HQ diffusion coefficient, suggestive for a strongly coupled QGP.
                Bookmark

                Author and article information

                Journal
                12 June 2008
                2009-06-09
                Article
                10.1103/PhysRevC.79.064902
                0806.2055
                3a3d77e1-e203-4f72-afea-f992c5f80a2c

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. C 79, 064902 (2009)
                10 pages, 6 figures; v2: modified title, light-quark results taken out, version accepted for publication in PRC
                hep-ph nucl-ex nucl-th

                Comments

                Comment on this article