2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Activation of Retinal Angiogenesis in Hyperglycemic pdx1−/− Zebrafish Mutants

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Progression from the initial vascular response upon hyperglycemia to a proliferative stage with neovacularizations is the hallmark of proliferative diabetic retinopathy. Here, we report on the novel diabetic pdx1 -/- zebrafish mutant as a model for diabetic retinopathy that lacks the transcription factor pdx1 through CRISPR-Cas9-mediated gene knockout leading to disturbed pancreatic development and hyperglycemia. Larval pdx1 -/- mutants prominently show vasodilation of blood vessels through increased vascular thickness in the hyaloid network as direct developmental precursor of the adult retinal vasculature in zebrafish. In adult pdx1 -/- mutants, impaired glucose homeostasis induces increased hyperbranching and hypersprouting with new vessel formation in the retina and aggravation of the vascular alterations from the larval to the adult stage. Both vascular aspects respond to antiangiogenic and antihyperglycemic pharmacological interventions in the larval stage and are accompanied by alterations in the nitric oxide metabolism. Thus, the pdx1 -/- mutant represents a novel model to study mechanisms of hyperglycemia-induced retinopathy wherein extensive proangiogenic alterations in blood vessel morphology and metabolic alterations underlie the vascular phenotype.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Diabetic Retinopathy: Pathophysiology and Treatments

          Diabetic retinopathy (DR) is the most common complication of diabetes mellitus (DM). It has long been recognized as a microvascular disease. The diagnosis of DR relies on the detection of microvascular lesions. The treatment of DR remains challenging. The advent of anti-vascular endothelial growth factor (VEGF) therapy demonstrated remarkable clinical benefits in DR patients; however, the majority of patients failed to achieve clinically-significant visual improvement. Therefore, there is an urgent need for the development of new treatments. Laboratory and clinical evidence showed that in addition to microvascular changes, inflammation and retinal neurodegeneration may contribute to diabetic retinal damage in the early stages of DR. Further investigation of the underlying molecular mechanisms may provide targets for the development of new early interventions. Here, we present a review of the current understanding and new insights into pathophysiology in DR, as well as clinical treatments for DR patients. Recent laboratory findings and related clinical trials are also reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic retinopathy: current understanding, mechanisms, and treatment strategies.

            Diabetic retinopathy (DR) causes significant visual loss on a global scale. Treatments for the vision-threatening complications of diabetic macular edema (DME) and proliferative diabetic retinopathy (PDR) have greatly improved over the past decade. However, additional therapeutic options are needed that take into account pathology associated with vascular, glial, and neuronal components of the diabetic retina. Recent work indicates that diabetes markedly impacts the retinal neurovascular unit and its interdependent vascular, neuronal, glial, and immune cells. This knowledge is leading to identification of new targets and therapeutic strategies for preventing or reversing retinal neuronal dysfunction, vascular leakage, ischemia, and pathologic angiogenesis. These advances, together with approaches embracing the potential of preventative or regenerative medicine, could provide the means to better manage DR, including treatment at earlier stages and more precise tailoring of treatments based on individual patient variations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review.

              Diabetes retinopathy (DR) is a leading cause of vision loss in middle-aged and elderly people globally. Early detection and prompt treatment allow prevention of diabetes-related visual impairment. Patients with diabetes require regular follow-up with primary care physicians to optimize their glycaemic, blood pressure and lipid control to prevent development and progression of DR and other diabetes-related complications. Other risk factors of DR include higher body mass index, puberty and pregnancy, and cataract surgery. There are weaker associations with some genetic and inflammatory markers. With the rising incidence and prevalence of diabetes and DR, public health systems in both developing and developed countries will be faced with increasing costs of implementation and maintenance of a DR screening program for people with diabetes. To reduce the impact of DR-related visual loss, it is important that all stakeholders continue to look for innovative ways of managing and preventing diabetes, and optimize cost-effective screening programs within the community.
                Bookmark

                Author and article information

                Contributors
                Journal
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                April 20 2020
                May 2020
                May 2020
                March 05 2020
                : 69
                : 5
                : 1020-1031
                Article
                10.2337/db19-0873
                32139597
                3a790027-385e-4608-8bfe-e638eefacda0
                © 2020

                Free to read

                http://www.diabetesjournals.org/site/license

                History

                Comments

                Comment on this article