8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new species of Gordius (Phylum Nematomorpha) from terrestrial habitats in North America

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Freshwater hairworms (class Gordiida ) are members of the phylum Nematomorpha that use terrestrial arthropods as definitive hosts but reside as free-living adult worms in rivers, lakes, or streams. The genus Gordius consists of 90 described species, of which three species were described from freshwater habitats in North America. In this paper we describe a new species of Gordius from terrestrial habitats in Oklahoma, Texas, and Louisiana, United States. Oddly, each year hundreds of adult free-living worms appear after bouts of heavy rain on streets, sidewalks, and lawns during the winter season, when terrestrial arthropod hosts are not active. The new species is described based on morphological characters of adults and non-adult stages including the egg strings, eggs, larvae, and cysts. Adult males have a unique row of bristles on the ventral inner side of each tail lobe and a circular pattern of bristles on the terminal end of each lobe, which distinguishes them from all other described North American species of Gordius . The egg string, larval, and cyst morphology of this new species conform to previous descriptions of non-adult hairworm stages for the genus Gordius . However, the eggs of this new species of hairworm are unique, as they contain an outer shell separated by distinct space from a thick inner membrane. The consistent occurrence of this gordiid in terrestrial habitats, along with its distinct egg morphology, suggests that this new species of hairworm has a terrestrial life cycle.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          A molecular phylogeny of Physidae (Gastropoda: Basommatophora) based on mitochondrial DNA sequences

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biology of the phylum nematomorpha.

            Compared with most animal phyla, the Nematomorpha, also known as hair worms, is a relatively understudied metazoan phylum. Although nematomorphs make up only 1 of 3 animal phyla specializing solely on a parasitic life style, little attention has been focused on this enigmatic group scientifically. The phylum contains two main groups. The nectonematids are parasites of marine invertebrates such as hermit crabs. The gordiids are parasites of terrestrial arthropods, such as mantids, beetles, and crickets. Members of both of these groups are free-living as adults in marine and freshwaters respectively. In recent years, large strides have been made to understand this group more fully. New information has come from collection efforts, new approaches in organismal biology, modern techniques in microscopy and molecular biology. This review will focus on the advances made in four main areas of research: (1) morphology, (2) taxonomy and systematics, (3) life cycle and ecology and (4) host behavioural alterations. Recent research focus on the structure of both nectonematids and gordiids has added new insights on the morphology of adult worms and juveniles. The nervous system of gordiids is now well described, including the documentation of sensory cells. In addition, the availability of material from the juvenile of several species of gordiids has made it possible to document the development of the parasitic stage. New collections and reinvestigations of museum specimens have allowed for a critical reevaluation of the validity of established genera and species. However, traditional taxonomic work on this group continues to be hampered by two impeding factors: first is the lack of species-specific characters; and second is the problem of intraspecific variation, which has likely led to the description of numerous synonyms. Modern molecular techniques have been used recently to support independently the broad relationships among gordiids. During the turn of the millennium, the study of the life cycle and general ecology of gordiids enjoyed a revival. The pivotal outcome of this research was the domestication of a common American gordiid species, Paragordius varius. This species was the first of this phylum to be laboratory-reared. Through this research, the life cycle of several distantly related gordiid species was investigated. Other work showed that gordiids persist in the environment in the cyst stage by moving through different hosts by paratenesis. These cysts have been shown to retain infectivity for up to a year. These factors have likely contributed to the finding that gordiid cysts are one of the most common metazoans in some aquatic environments. Finally, recent work has focused on elucidating the mechanism of how gordiids make the transition from terrestrially based definitive hosts to a free-living aquatic environment. It has been shown that hosts are manipulated by the parasites to enter water. Using this study system, and using histology and proteomic tools, the method of manipulation used by these parasites is being further investigated. This manipulation, and the reaction of the cricket to this manipulation, has been postulated to benefit both the parasite and the host. Although large strides have been made within the last 10 years in the understanding of nematomorphs, we make the case that a lot of basic information remains to be uncovered. Although seemingly a daunting task, the recent advances in information and techniques lay a solid foundation for the future study of this unique group of parasites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cryptic species of hairworm parasites revealed by molecular data and crowdsourcing of specimen collections

              Recognizing cryptic species promotes a better understanding of biodiversity, systematics, evolutionary biology, and biogeography. When cryptic species are disease-causing organisms, such as parasites, their correct recognition has important implications for the study of epidemiology, disease ecology, and host-parasite relationships. Freshwater nematomorphs (Nematomorpha: Gordiida) or hairworms, are an enigmatic yet fascinating group of parasites that are known to manipulate host behavior to aid transition from the parasitic phase, within terrestrial insects, to the free-living aquatic stage. Hairworm taxonomy has been hampered by a paucity of informative diagnostic characters and it has long been suspected that this group contains numerous cryptic species. Study of single hairworm species over large geographical areas has been difficult due to extremely rare encounters and unreliable methods of collecting adult worms. Here we report that by using crowdsourcing, citizen scientists have collected and submitted samples of Gordius cf. robustus from throughout its range in North America making its genetic study possible. Combined with our own collections, we examined samples from 28 localities within the USA; despite the collection of numerous hairworms from Canada and Mexico, G. cf. robustus were not collected outside of the contiguous United States. Mitochondrial CO1 genetic distances revealed that specimens grouped into 8 clades separated by 8-24.3%. In addition, molecular evidence from mitochondrial (CO1 and cytB) and nuclear (partial 28S, ITS1, 5.8S and ITS2) DNA suggests that these 8 clades are distinct species and that this group of species is paraphyletic, since the North American species G. attoni and the European species G. aquaticus and G. balticus group among the G. robustus lineages. Furthermore, there was a significant correlation between genetic (CO1) and geographic distance between the 8 Gordius species. This study demonstrates the value of involving the general public in biodiversity studies and highlights the feasibility of using the mitochondrial CO1 gene as a taxonomic marker for genetic barcoding and species identification within the phylum Nematomorpha.
                Bookmark

                Author and article information

                Contributors
                Journal
                Zookeys
                Zookeys
                2
                urn:lsid:arphahub.com:pub:45048D35-BB1D-5CE8-9668-537E44BD4C7E
                urn:lsid:zoobank.org:pub:91BD42D4-90F1-4B45-9350-EEF175B1727A
                ZooKeys
                Pensoft Publishers
                1313-2989
                1313-2970
                2019
                27 November 2019
                : 892
                : 59-75
                Affiliations
                [1 ] Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, Oklahoma 74078, USA Oklahoma State University Stillwater United States of America
                [2 ] Zoological Museum and Institute, Biocenter Grindel, Martin-Luther-King-Platz 3, University of Hamburg, 20146 Hamburg, Germany University of Hamburg Hamburg Germany
                [3 ] Center for Evolutionary and Theoretical Immunology, Department of Biology, 163 Castetter Hall, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA University of New Mexico Albuquerque United States of America
                Author notes
                Corresponding author: Christina Anaya ( christina.anaya@ 123456okstate.edu )

                Academic editor: Y. Mutafchiev

                Author information
                https://orcid.org/0000-0002-8170-2877
                Article
                38868
                10.3897/zookeys.892.38868
                6892959
                3a82bdfa-bb24-47dd-8ada-f7c26c5f568c
                Christina Anaya, Andreas Schmidt-Rhaesa, Ben Hanelt, Matthew G. Bolek

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 06 August 2019
                : 21 October 2019
                Categories
                Research Article
                Nematomorpha
                Biodiversity & Conservation
                Cenozoic
                Americas

                Animal science & Zoology
                eggs, gordiida ,hairworm,life cycles,north america,oklahoma,soil,animalia,gordea,gordiidae
                Animal science & Zoology
                eggs, gordiida , hairworm, life cycles, north america, oklahoma, soil, animalia, gordea, gordiidae

                Comments

                Comment on this article