28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulators of Androgen Action Resource: a one-stop shop for the comprehensive study of androgen receptor action

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Androgen receptor (AR) is a ligand-activated transcription factor that is the main target for treatment of non-organ-confined prostate cancer (CaP). Failure of life-prolonging AR-targeting androgen deprivation therapy is due to flexibility in steroidogenic pathways that control intracrine androgen levels and variability in the AR transcriptional output. Androgen biosynthesis enzymes, androgen transporters and AR-associated coregulators are attractive novel CaP treatment targets. These proteins, however, are characterized by multiple transcript variants and isoforms, are subject to genomic alterations, and are differentially expressed among CaPs. Determining their therapeutic potential requires evaluation of extensive, diverse datasets that are dispersed over multiple databases, websites and literature reports. Mining and integrating these datasets are cumbersome, time-consuming tasks and provide only snapshots of relevant information. To overcome this impediment to effective, efficient study of AR and potential drug targets, we developed the Regulators of Androgen Action Resource (RAAR), a non-redundant, curated and user-friendly searchable web interface. RAAR centralizes information on gene function, clinical relevance, and resources for 55 genes that encode proteins involved in biosynthesis, metabolism and transport of androgens and for 274 AR-associated coregulator genes. Data in RAAR are organized in two levels: (i) Information pertaining to production of androgens is contained in a ‘pre-receptor level’ database, and coregulator gene information is provided in a ‘post-receptor level’ database, and (ii) an ‘other resources’ database contains links to additional databases that are complementary to and useful to pursue further the information provided in RAAR. For each of its 329 entries, RAAR provides access to more than 20 well-curated publicly available databases, and thus, access to thousands of data points. Hyperlinks provide direct access to gene-specific entries in the respective database(s). RAAR is a novel, freely available resource that provides fast, reliable and easy access to integrated information that is needed to develop alternative CaP therapies.

          Database URL: http://www.lerner.ccf.org/cancerbio/heemers/RAAR/search/

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent.

          Epigenetic regulators represent a promising new class of therapeutic targets for cancer. Enhancer of zeste homolog 2 (EZH2), a subunit of Polycomb repressive complex 2 (PRC2), silences gene expression via its histone methyltransferase activity. We found that the oncogenic function of EZH2 in cells of castration-resistant prostate cancer is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a coactivator for critical transcription factors including the androgen receptor. This functional switch is dependent on phosphorylation of EZH2 and requires an intact methyltransferase domain. Hence, targeting the non-PRC2 function of EZH2 may have therapeutic efficacy for treating metastatic, hormone-refractory prostate cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer.

            Androgen receptor (AR) plays a central role in prostate cancer, and most patients respond to androgen deprivation therapies, but they invariably relapse with a more aggressive prostate cancer that has been termed hormone refractory or androgen independent. To identify proteins that mediate this tumor progression, gene expression in 33 androgen-independent prostate cancer bone marrow metastases versus 22 laser capture-microdissected primary prostate cancers was compared using Affymetrix oligonucleotide microarrays. Multiple genes associated with aggressive behavior were increased in the androgen-independent metastatic tumors (MMP9, CKS2, LRRC15, WNT5A, EZH2, E2F3, SDC1, SKP2, and BIRC5), whereas a candidate tumor suppressor gene (KLF6) was decreased. Consistent with castrate androgen levels, androgen-regulated genes were reduced 2- to 3-fold in the androgen-independent tumors. Nonetheless, they were still major transcripts in these tumors, indicating that there was partial reactivation of AR transcriptional activity. This was associated with increased expression of AR (5.8-fold) and multiple genes mediating androgen metabolism (HSD3B2, AKR1C3, SRD5A1, AKR1C2, AKR1C1, and UGT2B15). The increase in aldo-keto reductase family 1, member C3 (AKR1C3), the prostatic enzyme that reduces adrenal androstenedione to testosterone, was confirmed by real-time reverse transcription-PCR and immunohistochemistry. These results indicate that enhanced intracellular conversion of adrenal androgens to testosterone and dihydrotestosterone is a mechanism by which prostate cancer cells adapt to androgen deprivation and suggest new therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer.

              Although systemic androgen deprivation prolongs life in advanced prostate cancer, remissions are temporary because patients almost uniformly progress to a state of a castration-resistant prostate cancer (CRPC) as indicated by recurring PSA. This complex process of progression does not seem to be stochastic as the timing and phenotype are highly predictable, including the observation that most androgen-regulated genes are reactivated despite castrate levels of serum androgens. Recent evidence indicates that intraprostatic levels of androgens remain moderately high following systemic androgen deprivation therapy, whereas the androgen receptor (AR) remains functional, and silencing the AR expression following castration suppresses tumor growth and blocks the expression of genes known to be regulated by androgens. From these observations, we hypothesized that CRPC progression is not independent of androgen-driven activity and that androgens may be synthesized de novo in CRPC tumors leading to AR activation. Using the LNCaP xenograft model, we showed that tumor androgens increase during CRPC progression in correlation to PSA up-regulation. We show here that all enzymes necessary for androgen synthesis are expressed in prostate cancer tumors and some seem to be up-regulated during CRPC progression. Using an ex vivo radiotracing assays coupled to high-performance liquid chromatography-radiometric/mass spectrometry detection, we show that tumor explants isolated from CRPC progression are capable of de novo conversion of [(14)C]acetic acid to dihydrotestosterone and uptake of [(3)H]progesterone allows detection of the production of six other steroids upstream of dihydrotestosterone. This evidence suggests that de novo androgen synthesis may be a driving mechanism leading to CRPC progression following castration.
                Bookmark

                Author and article information

                Journal
                Database (Oxford)
                Database (Oxford)
                databa
                databa
                Database: The Journal of Biological Databases and Curation
                Oxford University Press
                1758-0463
                2016
                14 February 2016
                14 February 2016
                : 2016
                : bav125
                Affiliations
                1Department of Cancer Genetics
                2Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
                3Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
                4Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
                5Department of Urology
                6Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
                Author notes
                [* ]Corresponding author: Tel: +1 216 4457357; Fax: +216-445 6269; Email: heemerh@ 123456ccf.org

                These authors contributed equally to this work.

                Citation details: DePriest, A.D., Fiandalo, M.V., Schlanger, S. et al. Regulators of Androgen Action Resource: a one-stop shop for the comprehensive study of androgen receptor action. Database (2016) Vol. 2016: article ID bav125; doi:10.1093/database/bav125

                Article
                bav125
                10.1093/database/bav125
                4752970
                26876983
                3ad10c06-eec6-4072-9378-545577e903c8
                © The Author(s) 2016. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 August 2015
                : 08 December 2015
                : 14 December 2015
                Page count
                Pages: 11
                Categories
                Original Article

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article