20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neurofilaments and Neurofilament Proteins in Health and Disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          Neurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.

          Abstract

          Neurofilaments are intermediate filaments that primarily provide structural support in neuronal axons. Subunits of neurofilaments also exist within postsynaptic terminal boutons and may influence neurotransmission.

          Related collections

          Most cited references181

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Editorial

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vesicular glycolysis provides on-board energy for fast axonal transport.

            Fast axonal transport (FAT) requires consistent energy over long distances to fuel the molecular motors that transport vesicles. We demonstrate that glycolysis provides ATP for the FAT of vesicles. Although inhibiting ATP production from mitochondria did not affect vesicles motility, pharmacological or genetic inhibition of the glycolytic enzyme GAPDH reduced transport in cultured neurons and in Drosophila larvae. GAPDH localizes on vesicles via a huntingtin-dependent mechanism and is transported on fast-moving vesicles within axons. Purified motile vesicles showed GAPDH enzymatic activity and produced ATP. Finally, we show that vesicular GAPDH is necessary and sufficient to provide on-board energy for fast vesicular transport. Although detaching GAPDH from vesicles reduced transport, targeting GAPDH to vesicles was sufficient to promote FAT in GAPDH deficient neurons. This specifically localized glycolytic machinery may supply constant energy, independent of mitochondria, for the processive movement of vesicles over long distances in axons. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intermediate filaments: from cell architecture to nanomechanics.

              Intermediate filaments (IFs) constitute a major structural element of animal cells. They build two distinct systems, one in the nucleus and one in the cytoplasm. In both cases, their major function is assumed to be that of a mechanical stress absorber and an integrating device for the entire cytoskeleton. In line with this, recent disease mutations in human IF proteins indicate that the nanomechanical properties of cell-type-specific IFs are central to the pathogenesis of diseases as diverse as muscular dystrophy and premature ageing. However, the analysis of these various diseases suggests that IFs also have an important role in cell-type-specific physiological functions.
                Bookmark

                Author and article information

                Journal
                Cold Spring Harb Perspect Biol
                Cold Spring Harb Perspect Biol
                cshperspect
                cshperspect
                Cold Spring Harbor Perspectives in Biology
                Cold Spring Harbor Laboratory Press (Cold Spring Harbor, New York )
                1943-0264
                April 2017
                : 9
                : 4
                : a018309
                Affiliations
                [1 ]Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962
                [2 ]Department of Psychiatry, New York University School of Medicine, New York, New York 10016
                [3 ]Cell Biology, New York University School of Medicine, New York, New York 10016
                Author notes
                Article
                PMC5378049 PMC5378049 5378049 a018309
                10.1101/cshperspect.a018309
                5378049
                28373358
                3ae4e561-5250-4e82-9f61-dc0a4469f636
                Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved
                History
                Page count
                Pages: 24
                Categories
                096
                Concept
                Neurobiology

                Comments

                Comment on this article