Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5–3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for a frontoparietal control system revealed by intrinsic functional connectivity.

          Two functionally distinct, and potentially competing, brain networks have been recently identified that can be broadly distinguished by their contrasting roles in attention to the external world versus internally directed mentation involving long-term memory. At the core of these two networks are the dorsal attention system and the hippocampal-cortical memory system, a component of the brain's default network. Here spontaneous blood-oxygenation-level-dependent (BOLD) signal correlations were used in three separate functional magnetic resonance imaging data sets (n = 105) to define a third system, the frontoparietal control system, which is spatially interposed between these two previously defined systems. The frontoparietal control system includes many regions identified as supporting cognitive control and decision-making processes including lateral prefrontal cortex, anterior cingulate cortex, and inferior parietal lobule. Detailed analysis of frontal and parietal cortex, including use of high-resolution data, revealed clear evidence for contiguous but distinct regions: in general, the regions associated with the frontoparietal control system are situated between components of the dorsal attention and hippocampal-cortical memory systems. The frontoparietal control system is therefore anatomically positioned to integrate information from these two opposing brain systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multi-task connectivity reveals flexible hubs for adaptive task control

            Extensive evidence suggests the human ability to adaptively implement a wide variety of tasks is preferentially due to the operation of a fronto-parietal brain network. We hypothesized that this network’s adaptability is made possible by ‘flexible hubs’ – brain regions that rapidly update their pattern of global functional connectivity according to task demands. We utilized recent advances in characterizing brain network organization and dynamics to identify mechanisms consistent with the flexible hub theory. We found that the fronto-parietal network’s brain-wide functional connectivity pattern shifted more than other networks’ across a variety of task states, and that these connectivity patterns could be used to identify the current task. Further, these patterns were consistent across practiced and novel tasks, suggesting reuse of flexible hub connectivity patterns facilitates adaptive (novel) task performance. Together, these findings support a central role for fronto-parietal flexible hubs in cognitive control and adaptive implementation of task demands generally.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Is the P300 component a manifestation of context updating?

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                06 February 2017
                2017
                : 11
                : 28
                Affiliations
                [1] 1Instituto de Neurociencias, Universidad de Guadalajara Guadalajara, Mexico
                [2] 2Organismo Público Descentralizado Hospital Civil de Guadalajara Guadalajara, Mexico
                [3] 3Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara Guadalajara, Mexico
                [4] 4Facultad de Informática, Ciencias de la Comunicación y Técnicas Especiales, Universidad de Morón Buenos Aires, Argentina
                Author notes

                Edited by: Mikhail Lebedev, Duke University, USA

                Reviewed by: Veena A. Nair, University of Wisconsin-Madison, USA; Josefina Ricardo-Garcell, Universidad Nacional Autónoma de México, Mexico

                *Correspondence: Andrés A. González-Garrido, gonzalezgarrido@ 123456gmail.com
                Article
                10.3389/fnhum.2017.00028
                5292439
                3aec7b08-8fa1-4155-8e00-5ca5b2373b87
                Copyright © 2017 González-Garrido, Ruiz-Stovel, Gómez-Velázquez, Vélez-Pérez, Romo-Vázquez, Salido-Ruiz, Espinoza-Valdez and Campos.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 April 2016
                : 13 January 2017
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 96, Pages: 13, Words: 0
                Funding
                Funded by: Consejo Nacional de Ciencia y Tecnología 10.13039/501100003141
                Funded by: Secretaría de Educación Pública 10.13039/100010096
                Categories
                Neuroscience
                Original Research

                Neurosciences
                brain development,event-related potentials,sensory systems,brain connectivity,deafness/hearing loss,vibrotactile stimulation,learning and plasticity

                Comments

                Comment on this article