8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CCR2 signaling in breast carcinoma cells promotes tumor growth and invasion by promoting CCL2 and suppressing CD154 effects on the angiogenic and immune microenvironments

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer is the second leading cause of cancer related deaths for women, due mainly to metastatic disease. Invasive tumors exhibit aberrations in recruitment and activity of immune cells, including decreased cytotoxic T cells. Restoring the levels and activity of cytotoxic T cells is a promising anti-cancer strategy; but its success is tumor type-dependent. The mechanisms that coordinate recruitment and activity of immune cells and other stromal cells in breast cancer remain poorly understood. Using the MMTV-PyVmT/FVB mammary tumor model, we demonstrate a novel role for CCL2/CCR2 chemokine signaling in tumor progression by altering the microenvironment. Selective targeting of CCR2 in the PyVmT mammary epithelium inhibited tumor growth and invasion, elevated CD8+ T cells, decreased M2 macrophages and decreased angiogenesis. Co-culture models demonstrated these stromal cell responses were mediated by tumor derived CCL2 and CCR2-mediated suppression of the T cell activating cytokine, CD154. Co-culture analysis indicated that CCR2-induced stromal reactivity was important for tumor cell proliferation and invasion. In breast tumor tissues, CD154 expression inversely correlated with CCR2 expression and correlated with relapse free survival. Targeting the CCL2/CCR2 signaling pathway may reprogram the immune angiogenic and microenvironments and enhance effectiveness of targeted and immuno-therapies.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Defining the role of the tumor vasculature in antitumor immunity and immunotherapy

          It is now well established that cancer cells co-exist within a complex environment with stromal cells and depend for their growth and dissemination on tight and plastic interactions with components of the tumor microenvironment (TME). Cancer cells incite the formation of new blood and lymphatic vessels from preexisting vessels to cope with their high nutrient/oxygen demand and favor tumor outgrowth. Research over the past decades has highlighted the crucial role played by tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T-cell-mediated immunosurveillance, which are the main hallmarks of cancers. The structurally and functionally aberrant tumor vasculature contributes to the protumorigenic and immunosuppressive TME by maintaining a cancer cell’s permissive environment characterized by hypoxia, acidosis, and high interstitial pressure, while simultaneously generating a physical barrier to T cells' infiltration. Recent research moreover has shown that blood endothelial cells forming the tumor vessels can actively suppress the recruitment, adhesion, and activity of T cells. Likewise, during tumorigenesis the lymphatic vasculature undergoes dramatic remodeling that facilitates metastatic spreading of cancer cells and immunosuppression. Beyond carcinogenesis, the erratic tumor vasculature has been recently implicated in mechanisms of therapy resistance, including those limiting the efficacy of clinically approved immunotherapies, such as immune checkpoint blockers and adoptive T-cell transfer. In this review, we discuss emerging evidence highlighting the major role played by tumor-associated blood and lymphatic vasculature in thwarting immunosurveillance mechanisms and antitumor immunity. Moreover, we also discuss novel therapeutic approaches targeting the tumor vasculature and their potential to help overcoming immunotherapy resistance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer

            Introduction Tumor infiltrating lymphocytes may indicate an immune response to cancer development, but their significance remains controversial in breast cancer. We conducted this study to assess CD8+ (cytotoxic T) lymphocyte infiltration in a large cohort of invasive early stage breast cancers, and to evaluate its prognostic effect in different breast cancer intrinsic subtypes. Methods Immunohistochemistry for CD8 staining was performed on tissue microarrays from 3992 breast cancer patients. CD8+ tumor infiltrating lymphocytes were counted as intratumoral when in direct contact with tumor cells, and as stromal in adjacent locations. Kaplan-Meier functions and Cox proportional hazards regression models were applied to examine the associations between tumor infiltrating lymphocytes and breast cancer specific survival. Results Among 3403 cases for which immunohistochemical results were obtained, CD8+ tumor infiltrating lymphocytes were identified in an intratumoral pattern in 32% and stromal pattern in 61% of the cases. In the whole cohort, the presence of intratumoral tumor-infiltrating lymphocytes was significantly correlated with young age, high grade, estrogen receptor negativity, human epidermal growth factor receptor-2 positivity and core basal intrinsic subtype, and was associated with superior breast cancer specific survival. Multivariate analysis indicated that the favorable prognostic effect of CD8+ tumor infiltrating lymphocytes was significant only in the core basal intrinsic subgroup (Hazard ratio, HR = 0.35, 95% CI = 0.23-0.54). No association with improved survival was present in those triple negative breast cancers that lack expression of basal markers (HR = 0.99, 95% CI = 0.48-2.04) nor in the other intrinsic subtypes. Conclusions CD8+ tumor infiltrating lymphocytes are an independent prognostic factor associated with better patient survival in basal-like breast cancer, but not in non-basal triple negative breast cancers nor in other intrinsic molecular subtypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer

              Background: Tumour-infiltrating lymphocytes (TILs) are known to be associated with response to primary systemic therapy (PST) in breast cancer. This study was conducted to assess the association of TIL subsets with pathological complete response (pCR) after PST in breast cancer in relation to breast cancer subtype, breast cancer stem cell (BCSC) phenotype and epithelial–mesenchymal transition (EMT). Methods: The pre-chemotherapeutic biopsy specimens of 153 breast cancer patients who underwent surgical resection after anthracycline- or anthracycline/taxane-based PST were analysed. TIL subsets (CD4+, CD8+, and FOXP3+ TILs), BCSC phenotype, and the expression of EMT markers were evaluated by immunohistochemistry and were correlated with pCR after PST. Results: Infiltration of CD4+ and CD8+ T lymphocytes was closely correlated with BCSC phenotype and EMT. High levels of CD4+, CD8+, and FOXP3+ TILs were associated with pCR, and CD8+ TILs were found to be an independent predictive factor for pCR. In addition, CD8+ TILs were associated with pCR irrespective of breast cancer subtype, CD44+/CD24− phenotype, EMT, and chemotherapeutic regimen in subgroup analyses. Conclusion: These findings indicate that CD8+ cytotoxic T lymphocytes are a key component of TILs associated with chemo-response and can be used as a reliable predictor of response to anthracycline- or anthracycline/taxane-based PST in breast cancer.
                Bookmark

                Author and article information

                Journal
                8711562
                6325
                Oncogene
                Oncogene
                Oncogene
                0950-9232
                1476-5594
                5 December 2019
                11 December 2019
                March 2020
                11 June 2020
                : 39
                : 11
                : 2275-2289
                Affiliations
                [1 ]Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
                [2 ]Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
                [3 ]Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045
                [4 ]Department of Engineering Technology, Pittsburg State University, KS 66762
                Author notes
                [*]

                Equal contributing authors

                Corresponding Author: Nikki Cheng, 3901 Rainbow Boulevard, Wahl Hall East 1020, University of Kansas Medical Center, Department of Pathology and Laboratory, University of Kansas Medical Center, Kansas City, KS 66160, ncheng@ 123456kumc.edu , phone: 913-945-6773, fax: 913-945-6773
                Article
                NIHMS1544949
                10.1038/s41388-019-1141-7
                7071973
                31827233
                3b66954f-d2c0-469a-9f6a-280e58d14f57

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article