16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein

      research-article
      a , 1 , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box.

          We have identified the yeast and human homologs of the SKP1 gene as a suppressor of cdc4 mutants and as a cyclin F-binding protein. Skp1p indirectly binds cyclin A/Cdk2 through Skp2p, and directly binds Skp2p, cyclin F, and Cdc4p through a novel structural motif called the F-box. SKP1 is required for ubiquitin-mediated proteolysis of Cin2p, Clb5p, and the Cdk inhibitor Sic1p, and provides a link between these molecules and the proteolysis machinery. A large number of proteins contain the F-box motif and are thereby implicated in the ubiquitin pathway. Different skp1 mutants arrest cells in either G1 or G2, suggesting a connection between regulation of proteolysis in different stages of the cycle.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Systematic analysis and nomenclature of mammalian F-box proteins.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cullin-RING ubiquitin-protein ligases.

              The posttranslational addition of ubiquitin (Ub) helps control the half-life, localization, and action of many intracellular plant proteins. A primary function is the degradation of ubiquitylated proteins by the 26S proteasome, which in turn plays important housekeeping and regulatory roles by removing aberrant polypeptides and various normal short-lived regulators. Strikingly, both genetic and genomic studies reveal that Ub conjugation is extraordinarily complex in plants, with more than 1500 Ub-protein ligases (or E3s) possible that could direct the final transfer of the Ub moiety to an equally large number of targets. The cullin-RING ligases (CRLs) are a highly polymorphic E3 collection composed of a cullin backbone onto which binds carriers of activated Ub and a diverse assortment of adaptors that recruit appropriate substrates for ubiquitylation. Here, we review our current understanding of the organization and structure of CRLs in plants and their dynamics, substrates, potential functions, and evolution. The importance of CRLs is exemplified by their ability to serve as sensors of hormones and light; their essential participation in various signaling pathways; their control of the cell cycle, transcription, the stress response, self-incompatibility, and pathogen defense; and their dramatically divergent evolutionary histories in many plant lineages. Given both their organizational complexities and their critical influences, CRLs likely impact most, if not all, aspects of plant biology.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                20 November 2015
                2015
                : 5
                : 16610
                Affiliations
                [1 ]Stony Brook University, Department of Biochemistry and Cell Biology, Stony Brook , NY 11794-5215, USA
                Author notes
                Article
                srep16610
                10.1038/srep16610
                4653730
                26586289
                3b8ee958-9bd8-461b-821b-7315e475e1c0
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 19 June 2015
                : 16 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article